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Abstract

This thesis covers different aspects of nonlocal feature observed in quantum cor-

relations. Bell’s theorem decisively proved that non-locality is fundamental to

quantum mechanics and cannot be ascribed to any deeper local-realistic theory.

Entangled states act as resource for generating nonlocal quantum correlations

though the converse is not always true. Inspired by Werner’s local-realistic model

for certain entangled states, in second chapter, we provide the set of POVM mea-

surements (possibly optimal) for which the singlet state statistics can be generated

from pre-shared local resources (local hidden variables). Next, we discuss about

Leggett’s nonlocal-realistic model for entangled states which tries to assign sharp

properties to constituent subsystems. Leggett’s model leads to testable inequal-

ities which are violated by quantum mechanics. However, success of Leggett’s

model in reproducing the correlations observed in standard Bell-CHSH tests (with

co-planer observables) motivated new experiments for testing this model vis-a-

vis quantum mechanics. In chapter-3, we derive two new forms of Leggett-type

inequalities which, unlike the previous derived forms, puts no geometrical con-

straints on the relevant measurement settings. These forms may be useful for

future tests of Leggett’s model. In the following chapter (chapter-4) we formulate

a physical situation where the no-signaling condition is applied to derive a con-

strained relation within quantum mechanics. After that, in chapter-5, we study

quantum correlations in a generalized no-signaling framework. Though the non-

locality that can be extracted from quantum correlations respect the no-signaling

principle, there are many other supra-quantum correlations which obeys it. Then

a natural question is to look for physical principles that can help to distinguish

between quantum and supra-quantum correlations. The principle of non viola-

tion of information causality is one such proposal. We apply this principle to

study Hardy-type nonlocal correlations for two two-level systems. Finally, in the

concluding chapter we point to some interesting problems for future works.
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Chapter 1

General Introduction

1.1 Motivation

Quantum mechanics was developed in the first quarter of the 20th century out

of need to explain a number of surprising experimental observations which oth-

erwise were not possible to comprehend from the then existing theories (classical

physics). Manifestations of quantum phenomenon are diverse, each of them re-

vealing a departure from classical concepts in its own peculiar ways. However,

the present thesis is focused on studying certain aspects of an intriguing quantum

feature known as nonlocal quantum correlations—the establishment of correlations

between distant partners, through separated measurement of entangled particles,

which otherwise cannot be simulated only by using some pre-shared local resources

(in other words, correlations which can not have a local hidden variable descrip-

tion).

Historically, in the year 1935, Einstien, Podolosky and Rosen (EPR) [Einstein,

Podolsky and Rosen, 1935], through an example of a nonseparable quantum state

of two spatially separated particles (an EPR pair), argued that quantum mechani-

cal description of the considered physical system is limited by not accommodating

local-realism. According to EPR, it was plausible to assume that any complete

physical theory respects the principle of local-realism. This assumption lead them

to conclude that, though the predictions of quantum theory is an accurate descrip-

tion of statistical average values of observed physical quantities, at finer level (at

level of a single event) the theory is short of a complete description. A paradoxical

situation persisted for nearly three decades (it remained unclear, whether there can

1
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be any finer local-realistic description for EPR-type correlations or not?), until, in

the year 1964, John Bell [Bell, 1964] first showed that certain quantum correlations

cannot be reproduced from any deeper local-realistic description. Bell’s theorem

proved that correlation between results of local measurements on two spatially

separated subsystems can have a local-realistic description only if these correla-

tions satisfy certain constraints—Bell-type inequalities [Bell, 1964; Clauser and

Horne, 1974; Clauser et al., 1969]. On the contrary, quantum mechanics predicted

violation of these inequalities and therefore cannot embrace local-realism. Then,

it remained for experiments to decide, whether in nature, Bell-type inequalities

are violated or not? Many experiments, see for example [Aspect, Dalibard and

Roger, 1982; Aspect, Grangier and Roger, 1982; Tittel et al., 1998], have since

been performed which produce results consistent with quantum mechanics and

inconsistent with local realism. This surprising feature of quantum correlations is

termed as quantum non-locality. A comprehensive study on foundational issues

in quantum mechanics covering different aspects of quantum nonlocality can be

found in the work [Home, 1997] and [Home and Whitaker, 2007].

Quantum entanglement is the physical resource for generating non-local correla-

tions. However, relation between concepts of entanglement and non-locality is in

general too complex. Werner [Werner, 1989] first showed that, in fact, statistics

generated from certain entangled states can have a local realistic description. So

entanglement remains only a necessary condition for exhibition of nonlocal behav-

ior.

The concept of entanglement still defies our understanding, it is insightful to look

for alternative models to quantum correlations, based on more physical intuition.

By determining whether these models are compatible or not with quantum predic-

tions, one can identify the crucial features of entanglement and what is essential

in quantum correlations. Leggett’s nonlocal model [Leggett, 2003] is one such

attempt which ascribes well-defined individual properties to particles in an en-

tangled state. The resulting model and its generalizations contradicted quantum

predictions which where subsequently verified in experiments [Branciard et al.,

2008; Groblacher et al., 2007]. Investigations on generalized models à la Leggett

thus demonstrate that any simulation model for quantum correlations must have

fully undefined individual properties.

A key condition underpinning the ‘peaceful coexistence’ [Shimony, 1984] between

quantum mechanics and special relativity is the no-signaling condition (NSC)
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which prohibits the use of quantum nonlocality for sending information in a way

that can lead to causality paradoxes. An interesting line of study was initiated

by Gisin showing the use of NSC as a tool to either find the limits of quan-

tum mechanics, like constraining any conceivable nonlinear modification of the

Schrödinger equation [Gisin, 1990; Gisin and Rigo, 1995], or to obtain specific

bounds on quantum operations, like deriving bound on the fidelity of quantum

cloning machines [Ghosh et al., 1999; Gisin, 1998]. On the other hand, Popescu

and Rohrlich observed that the no-signaling principle can also allow post-quantum

correlations which can exceed the optimal Bell-CHSH violation in quantum me-

chanics [Popescu and Rohrlich, 1994]. Indeed, they provided examples of correla-

tions between two parties compatible with the no-signaling principle but without

any quantum realization. This observation has motivated search for underlying

physical principles for separating supraquantum (post-quantum) correlations from

quantum ones, or ideally an optimal set of physical principles for complete char-

acterization of the quantum set. Intensive effort has been devoted to the search

for information principles characterizing the set of quantum correlations, e.g. non-

trivial communication complexity [Brassard et al., 2006; van Dam, 2000], Infor-

mation Causality [Pawlowski et al., 2009], and Macroscopic Locality [Navascues

and Wunderlich, 2010].

Two main aspects of quantum correlations which motivates the work in this thesis

are: (i) relationship between quantum entanglement and (non)local simulation

models for quantum correlations, and (ii) study of quantum correlation in a no-

signaling framework. Correlations considered in the present thesis are mainly those

which are generated by performing local measurement on spatially separated parts

of bi-partite entangled states.

1.2 A Brief Introduction to Quantum Formalism

Quantum mechanics is a mathematical model for describing phenomenon observed

in the physical world. The model provides a general framework comprising of suit-

able mathematical objects from a complex Hilbert space which are associated with:

(i) states of single/composite physical systems, (ii) measurement of physically ob-

servable quantities on the system, and (iii) time evolution of state of the system.
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1.2.1 Basic Postulates

1.2.1.1 State

State space of an isolated physical system, say S, is a separable Hilbert space HS

defined over complex numbers. The state of the system is completely described by

a positive operator ρS with trace one, acting on the state space HS of the system.

ρS is called the density operator of the system. If a quantum system is in the state

ρi with probability pi, then the density operator of the system is ρS =
∑

i piρi.

Pure state: The state ρS of a system is pure if and only if it is a one dimensional

projection operator acting on HS. Then, ρS = |Ψ〉〈Ψ| for some |Ψ〉 ∈ HS. A

pure state can be, therefore, equivalently represented by a vector (wave function)

|Ψ〉 ∈ HS. One can now easily see that, if |Ψ1〉, |Ψ2〉, ... ∈ HS then c1|Ψ1〉+c2|Ψ2〉+
... ∈ HS where c1, c2, ... are complex numbers. Thus, in quantum mechanics, any

linear superposition of pure states of a physical system is again a valid pure state;

this is generally known as superposition principle.

Mixed state: A mixed state is an ensemble (classical statistical mixture) of pure

states. Suppose, a system is in state |Ψi〉 with probability pi where 1 ≤ i ≤ n and∑
i pi = 1, then, it is not possible to represent the effective state of the system

by a single vector (wave function) |Ψ〉 ∈ HS. The effective state, in the Hilbert

space HS of the system, can be then represented only by the density operator

ρS =
∑

i pi|Ψi〉〈Ψi|. It is important to mention here that two different ensembles

{pi, |Ψi〉} and {p̃j, |Ψ̃j〉} can give rise to the same effective state ρS.

1.2.1.2 Measurement

Quantum measurement of physical observables corresponds to a collection {Πm}
of measurement operators. These operators acts on the state space of the sys-

tem being measured. The index m refers to the measurement outcomes that may

occur in the experiment. If the state of the quantum system is ρS immediately

before the measurement then the probability that result m occurs is given by Born’s

rule, i.e., p(m) = Tr (Π†mΠmρS) and the state of the system after the measure-

ment is ΠmρSΠ†m
Tr (Π†mΠmρS)

. The measurement operators satisfy the completeness rela-

tion,
∑

m Π†mΠm = I.
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Projective measurement: A projective (von Neumann) measurement corre-

sponds to a collection {Pm} of mutually orthogonal projection operators satisfying

the completeness relation
∑

m Pm = I. On preforming projective measurement on

the state ρS, probability of obtaining the m-th outcome p(m) = Tr(PmρS) and the

post measurement state of the system is PmρSPm

Tr (PmρS)
. Generally, the self-adjoint op-

erator O =
∑

mmPm is termed as an observable on the measured system, then, the

eigenvalues and the corresponding eigenvectors of the observable O corresponds

respectively to measurement results and post measurement state of the system.

POVM measurement: A collection {Em} of positive operators satisfying
∑

mEm =

I defines a Positive Operator-Valued Measure (POVM); on performing a POVM

measurement on a state ρS, probability of obtainingm-th outcome p(m) = Tr(EmρS).

On comparing with the general formulation of quantum measurements, measure-

ment operators {Πm} satisfying Em = Π†mΠm can have multiple solutions, which

imply that a POVM measurement can be realized in many different ways. Hence,

unless the measurement operators corresponding to a POVM measurement are

explicitly known, there remains an ambiguity about the post measurement state

after the POVM measurement. Therefore, a POVM measurement is useful for

the experiments where the main objective is to collect the measurement statistics,

while knowing the post measurement states is either not possible (in usual photon

detection) or not relevant for the experiment.

1.2.1.3 Evolution

A closed quantum system undergoes unitary evolution with time. Suppose, initially

at time t0 the state of a quantum system is ρ(t0), which at a later time t evolves to

a state ρ(t), then the relationship between the initial state at time t0 and the final

state at time t is given by

ρ(t) = U(t0, t)ρ(t)U †(t0, t).

The unitary operator U(t0, t) = exp
[
−iH(t−t0)

~

]
, where H(t) is the Hamiltonian of

the system.
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1.2.2 Spin-1
2 particle

For an illustration of a simple quantum system, let us consider spin degrees of

freedom of a spin-1
2

particle which defines a two level system. Then, the state

space of a spin-1
2

particle is a 2-dimensional complex Hilbert space C2. Now,

consider an orthogonal operator basis consisting of {I, σ1, σ2, σ3}, where I =
(

1 0
0 1

)
is the identity matrix and σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, are the Pauli

matrices. In the considered basis, in general, density matrix (state) of a spin-1
2

particle can be expressed as

ρ =
1

2
[I + ~n · σ], ||~n|| ≤ 1 (1.1)

where ~n = (n1, n2, n3) ∈ R3 (three dimensional Euclidean space) and ~n · σ =

n1σ1 + n2σ2 + n3σ3. If ~n has unit norm the particle is in a pure state otherwise

state of the particle is mixed. One can geometrically visualize these states in a

solid Bloch Sphere defined as S = {(n1, n2, n3) : ||~n|| ≤ 1}. Points on the surface

of the Bloch sphere S represent pure sates and interior points represent mixed

states.

A projective measurement {P+, P−} on state ρ of the qubit (or a spin measure-

ment m̂ · σ ≡ (+1)P+ + (−1)P−, along direction m̂) where orthogonal projection

operators P± = 1
2
[I ± m̂ · σ], results in any one of the two outcomes, say +1 or

−1, with probability p(±1) = tr(ρP±) = 1
2
[1± ~n · m̂]. If the result is +1 (-1) the

post measurement state of the qubit is P+(−)ρP+(−)

tr[ρP+(−)]
.

1.2.3 Composite Systems and Quantum Entanglement

Let us now consider an example of two spin-1
2

particles. The state space of this

system is H1 ⊗ H2 where H1 and H2 are two dimensional complex Hilbert space

C2 associated with particle 1 and particle 2 respectively. Let {|Ψ1〉, |Ψ1〉} be a

orthonormal basis of H1 and {|Ψ2〉, |Ψ2〉} be that of H2. Then {|Ψ1〉⊗|Ψ2〉, |Ψ1〉⊗
|Ψ2〉, |Ψ1〉 ⊗ |Ψ2〉, |Ψ1〉 ⊗ |Ψ2〉} forms a natural orthonormal basis of the tensor

product Hilbert space H1 ⊗H2. Now suppose state of the composite system is

|Ψ12〉 = a|Ψ1〉 ⊗ |Ψ2〉 − b|Ψ1〉 ⊗ |Ψ2〉, |a|2 + |b|2 = 1, |a| 6= 0. (1.2)
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The state |Ψ12〉 has a remarkable property that it cannot be factored as |Ψ12〉 =

|Φ1〉 ⊗ |Φ2〉 such that |Φ1〉 ∈ H1 and |Φ2〉 ∈ H2. Such states are said to possess a

property called entanglement. If a = b = 1√
2

we obtain

|Ψ12〉 = |Ψ−〉 =
1√
2

[|Ψ1〉 ⊗ |Ψ2〉 − |Ψ1〉 ⊗ |Ψ2〉]

and this state is a spin singlet or a Einstein-Podolsky-Rosen (EPR) pair.

Definition of entanglement in a bipartite composite system is as follows:

If state of a bi-partite composite system ρ12
1 can be expressed as

∑
k ckρ

k
1⊗ρk2 for

some choice of positive integer k and density operators {ρki acting on Hdi
i : 1 ≤

i ≤ 2}, then such a state are separable. A state which is not seperable is known

as entangled state. The spin singlet |Ψ−〉 is an example of pure entangled state.

Density operator of composite system consisting of two spin-1
2

particles can be

expressed in Hilbert-Schmidt basis (operators acting on C2 ⊗ C2) as follows:

ρ12 =
1

4

[
I ⊗ I + (~r · σ)⊗ I + I ⊗ (~s · σ) +

3∑
m,n=1

tnmσn ⊗ σm

]
(1.3)

where ~r, ~s ∈ R3, ~r · σ = r1σ1 + r2σ2 + r3σ3, and ~s · σ = s1σ1 + s2σ2 + s3σ3. The

coefficients tnm = Tr[ρ12σn⊗σm] forms a 3×3 real matrix T . Here, σ1, σ2, σ3 are the

usual Pauli matrices. The density matrix corresponding to the singlet state |Ψ−〉
takes the form ρsinglet = 1

4
[I⊗I−σ1⊗σ1−σ2⊗σ2−σ3⊗σ3]. A mixture of ρsinglet

with maximally mixed state (white noise) I
2
⊗ I

2
in a ratio p : 1−p with 0 ≤ p ≤ 1 are

known as Werner states, expressed as: ρw = 1
4
[I⊗I−p(σ1⊗σ1 +σ2⊗σ2 +σ3⊗σ3)].

For 1
3
< p < 1, Werner states are examples of mixed entangled states.

In most general scenario, density operator of a n-partite system ρ12...n ∈ Hd1
1 ⊗

Hd2
2 ⊗ ... ⊗ Hdn

n can be entangled or separable in many different ways. The two

extreme cases are completely separable state and genuinely entangled state. A

n-partite state ρ12...n is completely separable if it can be expressed as ρ12...n =∑
k ckρ

k
1 ⊗ ρk2 ⊗ ...⊗ ρkn for some positive integer k and density operators {ρki : 1 ≤

i ≤ n} such that ρki acts on Hdi
i . On the other hand if a n-partite state has the

property that two components of any bipartition of the state is entangled, then

the n-partite state is said to be genuinely entangled.

1A density operator acting on the Hilbert space Hd1
1 ⊗H

d2
2 where d1 and d2 are the respective

dimensions of subsystem’s Hilbert spaces
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1.2.4 Subsystem of a Composite System

Given the state of a composite quantum system it is desirable to know how to

express the state of any of its components. The physical state of a part of the

composite system corresponds to a reduced density matrix which can be obtained

from the density matrix of the composite system. Suppose ρ12 is the density matrix

of the composite system comprising of two subsystems 1 and 2. Then, reduced

density matrix of the subsystem 1 is defined by

ρ1 ≡ tr2(ρ12)

where tr2 is a map of operators known as partial trace over subsystem 2. The

partial trace is defined by

tr2(|a1〉〈b1| ⊗ |a2〉〈b2| ≡ |a1〉〈b1|tr(|a2〉〈b2|) = |a1〉〈b1|〈a2|b2〉)

along with condition that the partial trace is linear in its inputs. In the definition,

|a1〉 and |b1〉 are any two vectors in the state space of subsystem 1, and |a2〉 and

|b2〉 are any two vectors in the state space of subsystem 2.

For example, for a state of a two qubit system given in Eq.(1.3), the reduced

density matrices (state of subsystems) of qubits 1 and 2 are respectively

ρ1 =
1

2
[I + ~r · σ], ||~r|| ≤ 1 (1.4)

ρ2 =
1

2
[I + ~s · σ], ||~s|| ≤ 1 (1.5)

Therefore, for two qubit Werner class of states the two component qubits are in a

maximally mixed state I
2
. In particular, it is interesting to note that, for an EPR

state though the state of composite system is pure (a state of maximal knowledge),

the state of two subsystems are maximally mixed (a state of complete ignorance).

1.2.5 General Quantum Operations

Until now we have discussed about ideally closed quantum systems. However,

in practice one has to often deal with quantum systems which are coupled to
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its environment. The free evolution, effect of measurements, or any other physi-

cal operations performed on such open quantum systems can be mathematically

described within the general framework of quantum operations formalism.

Kraus 1st representation: Any open system under study can be combined

with its environment to form a closed system. The combined state of system and

environment can then be considered to evolve unitarily. The final state of the

system can be obtained by taking partial trace over environment.

ε(ρfsys) = trenv[U(ρisys ⊗ ρenv)U †]. (1.6)

Kraus 2nd representation: Though, in principle, the unitary evolution of com-

bined system and environment can capture any possible quantum operation on

the system, practically finding the global unitary operator requires constructing

physical models for the environment which may be unnecessary if the interest is

only in studying the principle system. Thus, it is more convenient to represent any

quantum operation in terms of operators on the principle system’s Hilbert space

alone.

Let |ek〉 be an orthonormal basis for the finite dimensional state space of the

environment, and let ρenv = |e0〉〈e0| be initial state of the environment. Without

loss of generality one can assume that the environment starts in a pure state. Now

one can write,

ρfsys = ε(ρisys) = trenv[U(ρisys ⊗ ρenv)U †]

=
∑
k

〈e0|U(ρisys ⊗ |e0〉〈e0|)U †|e0〉

=
∑
k

Ekρ
i
sysE

†
k

where Ek ≡ 〈e0|U |ek〉 is an operator on the state space of the principle system.

The equation

ρfsys = ε(ρisys) =
∑
k

Ekρ
i
sysE

†
k (1.7)

is known as the operator-sum representation of ε. The operators {Ek} are known

as operation elements of the quantum operation ε. A quantum operation which

satisfies tr(ε(ρ)) = 1 for any ρ are trace preserving. One can easily show that
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operation elements {Ek} of a trace preserving quantum operation satisfy the com-

pleteness relation
∑

k E
†
kEk = I.

1.3 Nonlocal Quantum Correlations

In this section we discuss about nonlocal quantum correlations which was dis-

covered by John Bell [Bell, 1964] by following upon the EPR paradox [Einstein

et al., 1935]. Bell’s result state that no local realistic (classical) model exists which

can explain all quantum predictions and thus points at a difference between the

quantum and the classical world. Some conditions necessary for the local realistic

models are given in form of Bell-CHSH inequality [Bell, 1964; Clauser et al., 1969]

and Hardy’s nonlocality argument [Hardy, 1992, 1993].

First we present a brief history of Bell’s discovery and a few well-known versions

of Bell-type arguments for bi-partite systems with two local measurement set-

tings with binary outcomes at each site. Precisely we discuss about Bell-CHSH

inequality and Hardy’s nonlocality argument. We also present examples of quan-

tum states showing these nonlocal features. Such sates are necessarily entangled,

as first pointed by Werner [Werner, 1989]. To answer the question that whether

the converse is also true is complex, Werner initiated this study by providing a

local model for describing the statistics generated by local projective measure-

ment on a class of entangled states. For a simple illustration, we discuss a case of

the Werner’s local hidden variable model for two qubit entangled states known as

Werner-state.

Next, we discuss Leggett’s nonlocal-realistic hidden variable model [Leggett, 2003]

for quantum correlations, and finally, we discuss the relation between the no-

signaling principle and quantum nonlocality.

1.3.1 EPR paradox

One of the principal features of quantum mechanics is that it is a probabilistic

theory. This probability is not the expression of subjective ignorance about the

pre-assigned value of a dynamical variable in a quantum state, rather it represents

the probability of finding a particular value of a dynamical variable if that dy-

namical variable is measured. So what about the dynamical variables when the
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system is not subjected to any measurement; quantum mechanics remains silent in

this regard. Therefore, physicists including Einstein was not at all happy by this

probabilistic interpretation of quantum mechanics. In 1935, Einstein , Podolsky

and Rosen, came up with their famous EPR paper [Einstein et al., 1935] where

they argued that the mathematical formalism of quantum mechanics though con-

sistent, is incomplete in its present form. Their views where founded upon the

following assumptions:

1. Necessary condition for completeness : A necessary condition for the com-

pleteness of a theory is that “every element of the physical reality must have

a counterpart in the physical theory”.

2. Sufficient condition for reality : “If, without in any way disturbing a sys-

tem, we can predict with certainty (i.e., with probability equal to unity) the

value of a physical quantity, then there exists an element of physical reality

corresponding to this physical quantity”.

3. Locality principle: “Elements of reality belonging to one system can not be

affected (instantaneously) by measurements performed on another system

which is spatially separated from the former”.

With above three assumptions about the physical world quantum theory seems to

be incomplete because according to EPR one can show the existence of elements

of physical reality, whereas quantum mechanics does not embrace this concept.

In their original paper Einstein, Podolsky, and Rosen (EPR) considered quantum

predictions for measurements of position and momentum. We explain their rea-

soning with a simpler example of two maximally entangled qubits. This approach

was first presented by Bohm [Bohm, 1951]. Consider two observers, Alice and

Bob, in two distant laboratories. They perform measurements on spin-1
2

particles

which used to interact in the past. The quantum mechanical description of their

joint state of spins in z-basis (eigen states of spin observable σz) reads:

|Ψ−〉 =
1√
2

[| ↑z〉 ⊗ | ↓z〉 − | ↓z〉 ⊗ | ↑z〉] (1.8)

A remarkable property of this state (spin singlet) is that this state is invariant

under the same rotations of observables in the two labs. For instance, in another
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representation, the spin singlet in x-basis (eigen states of spin observable σx) takes

the same form as in z-basis, i.e.,

|Ψ−〉 =
1√
2

[| ↑x〉 ⊗ | ↓x〉 − | ↓x〉 ⊗ | ↑x〉] (1.9)

This is in general true for any n̂-basis. Thus, if Alice and Bob measure the same

observable, whatever outcome of Alice, the outcome of Bob is always opposite. If

Alice measures σz then she can predict with certainty the outcome of Bob’s σz

measurement. Thus, according to EPR there exists an element of physical reality

connected with the σz measurement. Just as well Alice could measure σx and

predict with certainty, without in any way disturbing the system, the outcome

of a possible σx measurement by Bob. Again, seemingly there exists an element

of reality connected with the σx measurement. Locality is assumed here: the

physical reality at Bob’s site is independent of everything that happens at Alice’s

site. Since quantum mechanics does not allow simultaneous knowledge of both σx

and σz, it misses some concepts which are necessary for the theory to be complete.

1.3.2 Local realism and Bell’s theorem

With the conclusion of the EPR paper, the natural question that appeared is

whether quantum mechanics can be completed by supplementing some unknown

extra parameter to the quantum state. But most of the physicists did not consider

this line of thought promising as von Neumann long ago discarded this approach.

Surprisingly J. S. Bell [Bell, 1964] again posed this question in a profound way. Bell

asked whether any local realistic theory can reproduce all the statistical results of

quantum mechanics? This new kind of approach gave birth to certain constraint

(in form of an inequality) on experimentally observable correlation functions which

became a touch stone to test whether physically observed correlations could be

reproduced by some local realistic theory. This inequality is now famously known

as Bell’s inequality.

To understand the essence of Bell’s inequality we consider a joint system consisting

of two subsystems shared between Alice and Bob. The two observers (Alice and

Bob) have access to one subsystem each, i.e. Alice and Bob perform a measurement

on their respective subsystems. Imagine that Alice randomly chose to performs

either measurement A0 or A1 on her subsystem. Similarly, Bob also chose to
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performs either measurement B0 or B1, for his subsystem. Let the corresponding

measurement results be A0, A1, B0, B1 ∈ {+1,−1}.

Let λ be a local-realistic complete state associated with this joint system. For this

state, values of every observable are fixed in a local way. i.e. the measurement

results of each of the distant (space-like separated) observers (here Alice and Bob)

are independent of the choice of observable of the other observer. This assumption

reflects the locality concept inherent in the arguments of EPR: “The real factual

situation of the Alice system is independent of what is done with Bobs system,

which is spatially separated from the former”. Consider now the quantity BCHSH

defined as:

BCHSH = A0B0 + A0B1 + A1B0− A1B1

= A0(B0 +B1) + A1(B0 −B1) (1.10)

Since A0, A1, B0, B1 takes values from {+1,−1} it is easy to see that for any fixed

λ

BCHSH(λ) = ±2 (1.11)

Then, the average of BCHSH over some distribution D(λ) of hidden variables λ is

− 2 ≤ 〈BCHSH〉 =

∫
D(λ) BCHSH(λ) dλ ≤ + 2 (1.12)

Thus we obtain the following famous Bell-CHSH inequality in terms of experimen-

tally observable correlation functions 〈AiBj〉, i, j ∈ {0, 1}

|〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉| ≤ 2 (1.13)

The astonishing thing about Bell’s result is these constraints are not always sat-

isfied by the predictions of quantum mechanics. The reason for the discrepancy

is due to the quantum description of the two-particle correlated state. This is

a so-called entangled or nonseparable state, whose correlations cannot be always

explained through some local-realistic model.
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Quantum mechanics violates Bell’s inequality:

Suppose Alice and Bob share one particle each from an EPR pair and can only

locally operate on there respective subsystem in two remote laboratories. A rep-

resentation of EPR state in the z-basis denoted by {|0〉, |1〉} can be written as:

|ΨAB〉 =
1√
2

[ |0〉 ⊗ |1〉 − |1〉 ⊗ |0〉 ] (1.14)

Let, Alice randomly choose to measure between spin observable A0 = σz and

A1 = σx on her subsystem and similarly Bob on his subsystem measures either

B0 = −σz+σx√
2

or B1 = σz−σx√
2

. Then, the quantum mechanical expectation values

of correlation functions 〈AiBj〉 are:

〈AiBj〉QM = (−1)ij
1√
2
.

Substituting these values into the left hand side of the Bell-CHSH expression we

get

|〈A0B0〉QM + 〈A0B1〉QM + 〈A1B0〉QM − 〈A1B1〉QM | = 2
√

2 > 2 (1.15)

Thus, we see a clear violation of Bell-CHSH inequality in quantum mechanics.

The experimental tests performed so far show this violation modulo some mi-

nor loopholes—these technical loopholes are gradually being closed and are now

believed not to have any fundamental impact on confirmation of Bell’s inequal-

ity violation. Therefore, contrary to the intuition envisaged by EPR, there can

be no finer local-realistic hidden variable description for correlations from which

quantum mechanical predictions can be always derived. Moreover, in this context

experimental findings support the quantum mechanical predictions.

Cirel’son bound

Cirel’son [Cirel’son, 1980] asked an important question: what is the maximum

value that Bell-CHSH expression can take within quantum mechanics? He an-

swered this question by showing that this value is in fact 2
√

2, which is same as

the value we obtained for the 2-qubit EPR state for a particular choice of observ-

able for showing Bell-CHSH violation in quantum mechanics. Below we give an

outline of Cirel’son’s proof:
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The Bell operator corresponding to Bell-CHSH expression can be written as

BCHSH = A0 ⊗ B0 + A0 ⊗ B1 + A1 ⊗ B0 − A1 ⊗ B1 (1.16)

Then for any pure quantum state |ΨAB〉 shared between Alice and Bob the value for

the Bell-CHSH expression can be calculated as 〈ΨAB|BCHSH |ΨAB〉. Considering

only pure sates is sufficient here as mixed states being statistical mixture of pure

states must also respect the derived upper bound. In fact it is only needed to

derive a bound for sup-norm ||.||sup2 of the Bell-CHSH operator and the result

easily follows. According to quantum mechanics, Alice and Bob’s observables

producing binary outcomes {+1,−1} must satisfy following relations:

A2
0 = A2

1 = B2
0 = B2

1 = 1 (1.17)

[A0,B0] = [A0,B1] = [A1,B0] = [A1,B1] = 0 (1.18)

where [Ai,Bj] = AiBj − BjAi are commutators of Alice and Bobs observables.

Under these conditions one gets an identity

B2
CHSH = 4I + [A0,A1][B0,B1] (1.19)

Also, the following inequality holds for two bounded hermitian operators O1 and

O2:

‖[O1,O2]‖sup ≤ 2 ‖O1‖sup ‖O1‖sup (1.20)

Then on applying this inequality we get

‖B2
CHSH‖sup ≤ 8

⇒ ‖BCHSH‖sup ≤ 2
√

2

⇒ 〈BCHSH〉|Ψ〉AB
≤ 2
√

2 for any state |Ψ〉AB (1.21)

We also saw that the Cirel’son’s bound 2
√

2 can be achieved within quantum me-

chanics. Moreover, Cirelson’s bound teaches us that any hypothetical correlation

which leads to a Bell-CHSH violation beyond the value 2
√

2 3 cannot be achieved

from any quantum resource.

2Supremum norm of a bounded linear operator O is defined as ||O||sup = Sup|Ψ〉
||O|Ψ〉||
|||Ψ〉||

3In general this is possible since the maximum algebraic value that Bell-CHSH expression can
take is 4
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1.3.3 Hardy’s nonlocality argument

In 1989 Greenberger, Horne and Zeilinger (GHZ) [Greenberger et al., 1989], unlike

Bell-CHSH inequality, provided a way to show a direct contradiction of quantum

mechanics with local realism without using any statistical inequality. The state

used for this demonstration by GHZ is a three qubit state |000〉+|111〉√
2

shared between

three spatially separated parties. Inspired by this work Lucien Hardy asked a

question: whether some simple GHZ-like argument can also be provided in a

bipartite setting? Hardy successfully produced one such argument which is now

popular as Hardy’s nonlocality argument [Hardy, 1992, 1993].

Hardy’s nonlocality argument is as follows: Consider a joint system consisting of

two subsystems shared between Alice and Bob. The two observers (Alice and Bob)

have access to one subsystem each, i.e. Alice and Bob perform a measurement

on their respective subsystems. Imagine that Alice has available two different

measurement apparatuses (observables), A0 and A1, to measure her subsystem.

Similarly, Bob also has two different measurement apparatuses, B0 and B1, for

his subsystem. The measured result of all these apparatuses can be +1 or −1.

Then, from the complete set of 16 joint probabilities P (±1,±1|Ai, Bj) in any

such experiment, Hardy’s nonlocality argument follows by restricting a judiciously

chosen set of four joint probabilities. One such set is as follows:

P (A0 = +1, B0 = +1) = q > 0 (1.22)

P (A1 = −1, B0 = +1) = 0 (1.23)

P (A0 = +1, B0 = −1) = 0 (1.24)

P (A1 = +1, B1 = +1) = 0 (1.25)

Next we show that no local realistic model can be provided for outcomes obeying

above restrictions. Suppose the first condition holds, then for some local realistic

hidden variable λ (such hidden variables exist since q > 0) Aλ0 = +1 and Bλ
0 = +1.

Now, for such hidden variables λ second and third condition implies that Aλ1 = +1

and Bλ
1 = +1 which contradicts the fourth condition.
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All bi-partite Hardy’s argument (for different set of four restricted probabilities)

can be compactly written as

P (A0 = i, B0 = j) = q > 0 (1.26)

P (A1 = −m,B0 = j) = 0 (1.27)

P (A0 = i, B0 = −n) = 0 (1.28)

P (A1 = m,B1 = n) = 0 (1.29)

where i, j,m, n can take any value from the set {+1,−1}. In the first discussed

particular example of Hardy’s set i = j = m = n = +1; we carry on with this

particular example to show that indeed there are quantum states and observables

which satisfying Hardy’s condition.

Here we give the Hardy’s nonlocality proof for given states of two spin-1
2

particles.

Consider a system of two spin-1
2

particles in a pure nonmaximally entangled state

ΨAB. Then for a proper choice of orthonormal basis {|uA〉, |vA〉} and {|uB〉, |vB〉}
for subsystem A and B respectively, the state ΨAB can be written as:

ΨAB = α|vA〉 ⊗ |vB〉+ β|uA〉 ⊗ |vB〉+ γ|vA〉 ⊗ |uB〉, where αβγ 6= 0 (1.30)

Observables A0, A1, B0, B1 are chosen such that respective eigen vectors corre-

sponding to eigen values +1 are, say, a0, a1, b0, b1, where

a0 =
β|vA〉 − α|uA〉√
|α|2 + |β|2

, a1 = |uA〉, b0 =
γ|vB〉 − α|uB〉√
|α|2 + |γ|2

, b1 = |uB〉 (1.31)

For the above choice of state and observables it follows that

P (A0 = +1, B0 = +1)QM = αβγ > 0 (1.32)

P (A1 = −1, B0 = +1)QM = 0 (1.33)

P (A0 = +1, B0 = −1)QM = 0 (1.34)

P (A1 = +1, B1 = +1)QM = 0 (1.35)

Therefore, from Hardy’s argument we can conclude that quantum mechanics can-

not be reproduced by any local realistic model.
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1.3.4 Entanglement and Nonlocality

Entanglement is necessary for showing violation of Bell-type inequalities. Whether

the converse is also true, i.e., do all the entangled states violate some Bell-type

inequality? Werner [Werner, 1989] first posed this question which is still an ex-

iting area of research. For pure entangled state now it is known that every pure

entangled state violate some Bell-type inequality. However, the relation between

entanglement and nonlocality for mixed entangled states, is more subtle than it

appears at first sight and the two concepts are not entirely equivalent. Werner

[Werner, 1989] showed that for standard von Neumann measurements there exist

mixed entangled states that cannot generate nonlocal correlations, i.e., cannot vi-

olate any Bell inequalities. This result was further extended by Barrett [Barrett,

2002] for any POVM measurements. On the other hand, another line of research

emerged which in many novel ways show that some non-standard Bell tests can

still be useful for filtering nonlocality from some (mixed) entangled state. Below

we briefly discuss Werner’s local hidden variable model for a class of two qubit

entangled states.

Werner’s local model for 2-qubit entangled state:

Earlier we discussed about 2-qubit entangled states of the form

ρw =
1

4
[I ⊗ I − p (σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3)]. (1.36)

If parts of such a state (qubits) are distributed at two separate locations (say one

qubit to Alice and the other one to Bob), joint probabilities for outcomes resulting

from local projective measurement, respectively along â and b̂, is given by:

PAB(i, j|â, b̂) =
1

4
[1− (ij)p â · b̂] where i, j ∈ {+1,−1}. (1.37)

Though these states are entangled beyond w = 1/3, they violate the Bell-CHSH

inequality if and only if p > 1/
√

2. Werner showed that a local model can be given

for these states (statistics) in the range 1/3 ≤ p ≤ 1/2. Werner’s model goes as

follows:

Suppose Alice and Bob pre-share vectors λ̂ uniformly distributed over a unit

sphere. Alice, for her measurement direction â, declares ‘+1’ with probability

PA
λ̂

(+1) =
1 + cosα

2
(1.38)
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where α is angle between direction â and λ̂. On the other hand, for measurement

along b̂, Bob declares ‘+1’ with probability

PB
λ̂

(+1) =
1

2
− p sgn(cos β) (1.39)

where β is the angle between the direction b̂ and λ̂, and sgn(x) = +1 (−1) for x ≥
0 (x < 0).

The joint probability of the outcome (+1,+1), can be calculated from

PAB
lhv (+1,+1) =

∫
ρ(λ̂) PA

λ̂
(+1) PB

λ̂
(+1) dλ̂ (1.40)

where ρ(λ̂) is the considered (uniform) distribution of the hidden variable λ̂. Eval-

uating the above integral gives

PAB
lhv (+1,+1) =

1

4
[1− p â · b̂] (1.41)

which exactly matches with the quantum mechanical prediction for the outcome

(+1,+1). The desired quantum mechanical probabilities for the other possible

outcomes also follow.

1.3.5 Nonlocal realism and Leggett’s models

Demonstration of Bell-nonlocality implies that any local-realistic description for

quantum correlations as envisaged by EPR is not possible: some nonlocal correla-

tion has to be present. Still, one may try to save as much as possible of a classical

world-view. This is a quite general idea but, one specific model inspired by this

line of thought has been proposed by A. J. Leggett [Leggett, 2003]. Recall that

one of the astonishing aspects of entanglement is the fact that a composite system

can be in an overall pure state, while none of its components is. Leggett’s nonlocal

variable model tries to ascribe sharp properties for both the composite and the

individual systems at a hidden variable level.

Consider a source emitting a photon pairs which may be entangled. Then ac-

cording to Leggett’s model the whole ensemble of photon pairs emitted from a

source constitutes of a disjoint union of subensembles that are assumed to have

the following features:
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1. In any subensemble, each pair of photons is characterized by definite values

of preassigned polarizations û and v̂ so that the whole ensemble corresponds

to a distribution of values of û and v̂ denoted by, say, D(û, v̂).

2. For any given pair belonging to a subensemble, individual outcomes (denoted

by A and B) of polarization measurements on each member of the pair along

directions, say, â and b̂ respectively are assumed to be determined by a

hidden variable, say, λ whose values are distributed over the pairs comprising

the given subensemble with the corresponding distribution function being

denoted by ρ(û,v̂)(λ).

3. The outcome of polarization measurement along â (b̂) for any individual

photon in one of the two wings may be non-locally dependent on the choice

of the measurement setting pertaining to its spatially separated partner in

the other wing, but the statistical result for a given subensemble obtained by

averaging over such effects is assumed to satisfy the Malus law. This entails

that the relevant mean value depends only on the local setting.

Then, accoring to Leggett’s model, mean values of outcomes of polarization mea-

surements for the subensembles characterized by û and v̂ pertaining to the two

wings can respectively be written as

A(û) =

∫
A(â, b̂, λ)ρ(û,v̂)(λ)dλ = û · â

B(v̂) =

∫
B(b̂, â, λ)ρ(û,v̂)(λ)dλ = v̂ · b̂ (1.42)

The experimentally observable polarization correlation function for the whole en-

semble is then expressible as

〈AB〉 =

∫∫
AB(û, v̂)D(û, v̂)dûdv̂ (1.43)

where AB(û, v̂) =
∫
A(â, b̂, λ)B(b̂, â, λ)ρ(û,v̂)(λ)dλ.

Leggett’s model was successful in explaining all the standard experimental data

(where local measurements of polarization is confined to a plane) obtained by per-

forming the Bell-CHSH tests. However, Leggett showed that his model contradict

some quantum mechanical predictions. The model thus called for new experiments

to test its validity vis-a-vis quantum mechanics. A number of inequalities derived

from Leggett’s assumptions are violated by quantum mechanics. Experiments that
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have been performed to date results in agreement with the quantum mechanical

prediction and thus falsify the Leggett’s model.

1.3.6 Quantum correlations and the No-signaling principle

Quantum mechanics has some sort of nonlocal feature. But is it nonlocal enough

to carry information with a speed greater than that of light in vacuum? According

to special relativity theory, nothing can move with a speed greater than that of

light in vacuum. Although the theory of relativity developed a long time before

the advent of full-fledged quantum mechanics, it was still considered to transcend

the then existing physical theories and was believed to hold in any future theory

as it basically describes the structure of space and time in which every sort of

physical phenomena take place. Quantum mechanics is such a theory which gives

a nice chance to verify the principle of relativistic causality .

To check whether quantum mechanics respects relativistic causality principle, we

consider two far apart systems, A and B, in a quantum state ρAB. We consider the

most general trace-preserving operation acting on system A described by the Kraus

operators {Ei} where
∑

iE
†
iEi = I. Before performing the quantum operation on

A, the density matrix for B is given by,

ρB = trA(ρAB) (1.44)

Let ρ
′
AB be the transformed state of the composite system after the quantum

operation on A. Then,

ρ
′

AB =
∑
i

(Ei ⊗ I)ρAB(E†i ⊗ I) (1.45)



Chapter 1. General Introduction 22

For the transformed state the marginal density matrix is given by

ρ
′

B = trA(ρ
′

AB)

= trA[
∑
i

(Ei ⊗ I)ρAB(E†i ⊗ I)]

= trA[
∑
i

(E†iEi ⊗ I)ρAB]

= trA[(
∑
i

E†iEi ⊗ I)ρAB]

= trA(ρAB)

= ρB

This is true for all trace-preserving quantum operations and for all joint density

matrices. Hence we see that the quantum operation respects relativistic causality.

1.4 Physical principle(s) determining the set of

quantum correlations

Quantum correlations have been shown to posses nonlocality. For Bell-CHSH vi-

olation quantum nonlocality cannot supersede Cirel’son’s bound. There are many

other (supra-classical) quantum features like intrinsic randomness [Barnum et al.,

2007; Masanes et al., 2006], incompatible measurements and uncertainty relations

[Scarani et al., 2006], no-cloning, teleportation [Barnum et al., 2008] etc. On the

other hand axioms of quantum physics is rather a mathematical description of its

formalism. This motivates a question: is it possible to identify some set of physical

principles which can uniquely characterize all quantum features (quantum mechan-

ics). In particular, one would like to characterize the set of quantum correlations,

that is correlations which can result from local measurements on quantum states.

Pioneering work by Popescu and Rohrlich [Popescu and Rohrlich, 1994] showed

that the no-signaling principle (that is, the impossibility of instantaneous com-

munication) does not suffice to recover this quantum set . Indeed, they provided

examples of correlations between two parties compatible with the no-signaling

principle but without any quantum realization. The most paradigmatic example

of these supra-quantum correlations is the so-called Popescu-Rohrlich (PR) box.
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Recently a search has been started for better principles separating supraquan-

tum correlations from quantum ones, or ideally a complete characterization of the

quantum set.

An important boost to this search was due to Van Dam [van Dam, 2000], who

introduced the idea that the existence of supra-quantum correlations, while not

violating the no-signaling principle, could have implausible consequences from an

information processing point of view. Van Dam showed that distant parties having

access to PR-boxes can render communication complexity trivial and argued that

this could be a reason for the non-existence of these correlations in nature [van

Dam, 2000]. Since then, intensive effort has been devoted to the search for informa-

tion principles characterizing the set of quantum correlations, e.g. the aforemen-

tioned non-trivial communication complexity [Brassard et al., 2006; Brunner and

Skrzypczyk, 2009; Linden et al., 2007; van Dam, 2000] and Information Causality

[Pawlowski et al., 2009].

1.4.1 PR correlation

The PR-box [Popescu and Rohrlich, 1994] is a specific bipartite no-signaling prob-

ability distribution with both binary input and output . Alice operating from one

end can input a bit x and receives a bit a as output; and similarly Bob from a far

away second end can input a bit y and receives a bit b as output. The PR-box is

specified by the rule

PPR(a, b|x, y) =
1

2
δa⊕b=xy (1.46)

where the symbol ⊕ is addition modulo 2, and δa⊕b=xy = 1 if a⊕ b = xy otherwise

0.

Correlation functions for any joint distribution P (a, b|x, y) is defined by following

relations

〈x, y〉 = P (0, 0|x, y) + P (1, 1|x, y)− P (1, 0|x, y)− P (0, 1|x, y). (1.47)

Then, the standard form of Bell-CHSH inequality

〈x = 0, y = 0〉+ 〈x = 0, y = 1〉+ 〈x = 1, y = 0〉 − 〈x = 1, y = 1〉 ≤ 2 (1.48)

≡ S =
1∑

x,y=0

P (a⊕ b = xy|x, y) ≤ 4 (1.49)
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Now, from the equivalent expression Eq.(1.49) for Bell-CHSH inequality, one can

easily see that the classical limit and the quantum limit (i.e., Cirel’son’s bound)

for values of S is respectively 3 and 2 +
√

2. For PR-box correlation S = 4

which exceeds the Cirel’son’s bound, therefore, PR-box correlation cannot be gen-

erated from any quantum resource. Also, note that the local distribution for Alice

P (a|x) = 1
2

which is independent of Bob’s input, therefore, Bob cannot signal to

Alice. Similarly, local distribution of Bob P (b|y) = 1
2
, so Alice cannot signal to

Bob. Hence, PR-correlation is a no-signaling resource.

1.4.2 Generalized no-signaling framework for bi-partite cor-

relations

In general, there are many PR-box type correlations which are supra-quantum

however the no-signaling principle is insufficient to separate such correlations from

quantum correlations. Then, what are the physical principle(s) which can achieve

this goal? To study this problem systematically it is convenient to develop a

general framework which is constrained only by the no-signaling principle.

Here we briefly describe the no-signaling framework for all bi-partite correlations.

Let the inputs of Alice and Bob are written x ∈ X and y ∈ Y respectively; the

outputs (it is assumed that every input leads to the same number of possible out-

comes) are written a ∈ A and b ∈ B respectively. Then the probability distribution

can be expressed as:

P = {P (a, b|x, y) : x ∈ X, y ∈ Y, a ∈ A, b ∈ B} (1.50)

The no-signaling distributions are restricted by the no-signaling constraints:

P (a|x, y) = P (a|x) and P (b|x, y) = P (b|y) for all a, b, x, y (1.51)

Since all the constraints defining no-signaling distributions are linear the collection

of all no-signaling distribution (each distribution represented as a point) defines a

polytope.
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1.4.3 Information causality principle

Information causality (IC) principle [Pawlowski et al., 2009; Pawlowski and Scarani,

2011] is a generalization of no-signaling condition. Relativistic causality (or the

no-signaling principle) states that any party cannot extract more information then

the amount of classical bits it receives. The principle of information causality on

the other hand put an even stronger restriction by forbidding more information to

be potentially available to the receiver than that provided by the sender.

IC principle can be formulated quantitatively through an information processing

game played between two parties, say Alice and Bob. Alice receives a randomly

generated N -bit string ~x = (x0, x1, ..., xN−1), and Bob is asked to guess Alice’s

i-th bit where i is randomly chosen from the set {0, 1, 2, ..., N − 1}. Alice is

allowed to send a M -bit message (M < N). Alice and Bob can pre-share no-

signaling resources (correlations) which they exploit according some pre-agreed

strategy while playing this game. Let Bob’s answer be denoted by βi. Then, the

information that Bob can potentially acquire, about the variable xi of Alice, is

given by the Shannon mutual information I(xi : βi). The statement of IC is that

the total potential information [Pawlowski et al., 2009; Pawlowski and Scarani,

2011] about Alice’s bit string ~x accessible to Bob cannot exceed the volume of

message he received from Alice, i.e.,

I =
N∑
i=1

I(xi : βi) ≤M (1.52)

1.4.4 Quantum correlation respects Information Causality

Now let us present a simple proof given in [Pawlowski and Scarani, 2011] to show

that IC holds in the classical and quantum information theory. It is sufficient

to focus on quantum correlations because classical correlations form a subset of

quantum correlations.

Suppose Alice and Bob share a quantum state ρAB between them. Let ρB be the

Bobs part of the shared quantum state and ~x the set of all Alices variables xi.

First note that after receiving the message ~m, which was communicated over the

channel with the classical communication capacity M , from Alice all the classical

and quantum information that Bob has does not contain more than M bits of
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information about ~x, i.e.,

I(~x : ~m, ρB) ≤M (1.53)

Now, for the proof the chain rule for mutual information is used, I(~x : ~m, ρB) =

I(~x : ρB)+I(~x : ~m|ρB). Since at the beginning of the protocol Bob knows nothing

about the variables of Alice I(~x : ρB) = 0, and the second term I(~x : ~m|ρB) =

I(~x, ρB : ~m) − I(ρB : ~m) is bounded by M due to the positivity of the mutual

information and the fact that ~m is a message sent over the channel with the

classical communication capacity M .

In the case of independent Alices input bits condition limits the information gain

about the individual bits as well because

I(~x : ~m, ρB) ≥
N∑
i=1

I(xi : ~m, ρB) (1.54)

This inequality is also proved using the chain rule. Finally, one can now observe

that Bobs output bit βi is obtained at the end from ~m and ρB. Hence, the data

processing inequality implies I(xi : ~m, ρB) ≥ I(xi : βi) which gives

IQM =
N∑
i=1

I(xi : βi) ≤ I(~x : ~m, ρB) ≤M (1.55)

1.4.5 PR-correlation violates IC

Suppose, Alice is provided a random bit string ~x = (x0, x1) (bit values are 0 or 1)

and Bob is asked to guess Alice’s i-th bit where i ∈ 0, 1. Alice can communicate 1

cbit to Bob and both parties shares one copy of a no-signaling resource (correlation)

P (a, b|x, y). Say, Bob’s guess is βi for Alice’s i-th bit. On following some protocol

to use the available resource, let probability with which Bob correctly guesses xi

be Pi. Then, I(xi : βi) = 1− h(Pi) where h(Pi) = −Pi logPi− (1−Pi) log(1−Pi)
is Shannon’s binary entropy. Therefore, here the IC principle [Pawlowski et al.,

2009] takes a form

I = I(x0 : β0) + I(x1 : β1) = 2− h(P1)− h(P2) ≤ 1 (1.56)

Now, suppose Alice and Bob share a single copy of PR-box correlation, P (a, b|x, y) =

δa⊕b=xy and they agree upon following protocol to play the game. Alice at her end
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inputs x0 ⊕ x1 in the PR-box and, say, the output she obtained is A. Then she

communicates c = A ⊕ x0 to Bob. Bob inputs i into the PR-box and obtains an

output, say, B. Finally, Bob declares his guess as βi = c ⊕ B. So, Bob’s guess,

βi = (A ⊕ x0) ⊕ B = (A ⊕ B) ⊕ x0 = (x0 ⊕ x1).i ⊕ x0 = xi is always correct and

in this case P1 = P2 = 1. Therefore, I = 2 > 1 and IC principle is violated. The

protocol used here is due to Wim van Dam [van Dam, 2000].

In general, when the van Dam’s protocol is applied with a single copy of some arbi-

trary no-signaling resource P (a, b|x, y), the probabilities with which Bob correctly

guesses Alice’s bits can be expressed as:

P1 =
1

2
[P (A⊕B = 0|0, 0) + P (A⊕B = 0|1, 0)] (1.57)

P2 =
1

2
[P (A⊕B = 0|0, 1) + P (A⊕B = 1|1, 1)] (1.58)

1.4.6 A sufficient condition for violation of IC

A generalization of the above task is—Alice is provided with N = 2n random bits,

say, ~x = (x0, x1, ..., xi, ...x2n−1) and can communicate 1 cbit to Bob who aims at

guessing Alice’s K-th bit. If this game is played between Alice and Bob, there is

a protocol (concatenation based on Van Dam’s protocol) through which Bob can

again guess any one of the Alice’s bit with probability 1. Then, in the reference

[Pawlowski et al., 2009], by replacing PR-boxes with some arbitrary no-signaling

resource P (a, b|x, y) a sufficient condition for violating the IC principle is obtained

as:

E2
1 + E2

2 > 1, where Ej = 2Pj − 1 for j ∈ {1, 2} (1.59)

1.4.7 Cirel’son’s bound from IC principle

Now, one can easily show that the Cirel’son’s bound can be derived from the

IC principle [Pawlowski et al., 2009]. First, let us recall that value of Bell-CHSH

parameter S =
∑1

x,y=0 P (a⊕b = xy|x, y) corresponding to Cirel’son’s bound takes

the value 2 +
√

2 (classical bound for S is 3). Also note that,

S = 2(P1 + P2). (1.60)
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Now, sufficient condition for violating the IC principle:

E2
1 + E2

2 > 1 ≡ (E1 + E2)2 > 1 + 2E1E2

≡ (S − 2)2 > 1 + 2 (2P1 − 1) (2P2 − 1)

≡ S > 1 + 2
√

2
√
P1P2 (1.61)

Therefore, since 1
2
(P1 + P2) ≥

√
P1P2 holds, for IC violation it is sufficient that:

S > 1 + 2
√

2
P1 + P2

2
≡ S > 1 + 2

√
2

(S
2
)

2

≡ S > 2 +
√

2 (1.62)

Thus, applying IC principle one gets to Cirel’sons bound SQ = 2 +
√

2, moreover

all no-signaling correlations with S > 2 +
√

2 violates the IC principle.

1.5 Outline of the thesis

This thesis discusses different aspects in the study of bi-partite quantum correla-

tions. The ordering of the chapters follow the sequence in which several related

concepts have been discussed this chapter. Most of the basic ideas to be applied

in the following chapters has been introduced.

Chapter-2 is motivated to explore local-realistic model(s) for certain entangled

state statistics. The essence of Bells theorem is that, in general, quantum statistics

cannot be reproduced by a local hidden variable (LHV) model. This impossibility

is strongly manifested when statistics collected by measuring certain local observ-

ables on a singlet state, violates the Bell inequality. In Chapter-2, we search for

local POVMs with binary outcomes for which an LHV model can be constructed

for a singlet state. We provide various subsets of observables for which LHV

model(s) can be provided for singlet statistics [Rai, Gazi, Banik, Das and Kunkri,

2012].

Chapter-3 is on Leggett’s nonlocal-realistic model for entangled states. As dis-

cussed earlier, Leggett’s model leads to experimentally testable inequalities which

can be violated by quantum correlation. The Leggett-type nonlocal realistic in-

equalities that have been derived to date are all contingent upon suitable geomet-

rical constraints to be strictly satisfied by the spatial arrangement of the relevant
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measurement settings. This undesirable restriction is removed in our work [Rai,

Home and Majumdar, 2011] by deriving appropriate forms of nonlocal realistic

inequalities, one of which involves the fewest number of settings compared to all

such inequalities derived earlier. The way such inequalities would provide a log-

ically firmer basis for a clearer testing of a Leggett-type nonlocal realistic model

vis-a-vis quantum mechanics is explained.

In Chapter-4 we discusses about the fundamental significance of no-signaling con-

dition in the study of quantum correlations. Predictive power of the no-signaling

condition (NSC) is demonstrated in a testable situation involving a non-ideal

SternGerlach (SG) device in one of the two wings of the EPR-Bohm entangled

pairs. In this wing, for two types of measurement in the other wing, we consider

the spin state of a selected set of particles that are confined to a particular half of

the plane while emerging from the SG magnetic field region. Due to non-idealness

of the SG setup, this spin state will have superposing components involving a

relative phase for which a testable quantitative constraint is obtained by invok-

ing NSC, thereby providing a means for precision testing of this fundamentally

significant principle [Home, Rai and Majumdar, 2013].

In Chapter-5 we the study bi-partite correlations in two two-level systems in the

generalized no-signaling framework. We apply the principle of non-violation of

information causality (a generalization of no-signaling condition) to study the

Hardy-type nonlocal correlations [Ahanj, Kunkri, Rai, Rahaman and Joag, 2010;

Gazi, Rai, Kunkri and Rahaman, 2010]. First we introduce the information causal-

ity principle to explain a quantum feature: why Hardy’s nonlocality cannot be

observed for maximally entangled states. Next, we derive a bound on Hardy’s

non-locality by applying a sufficient condition for violating information causality.

In the last chapter (Chapter-6), we first summerize the main results obtained in

this thesis and then discuss the future directions of our study. Here, we discuss

about some important problems in the study of nonlocality involving more than

two parties. Recently, some studies on few party quantum correlations has re-

vealed an intricate structure showing limitations of bi-partite physical principle in

characterizing all such correlations.



Chapter 2

Local simulation of singlet

statistics for a restricted set of

measurements

In this chapter we study certain entangled state statistics generated by most gen-

eral two outcome POVM measurements. The essence of Bell’s theorem is that,

in general, quantum statistics cannot be reproduced by a local hidden variable

(LHV) model. This impossibility is strongly manifested when statistics collected

by measuring certain local observables on a singlet state, violates the Bell inequal-

ity. We search for local POVMs with binary outcomes for which an LHV model

can be constructed for a singlet state. We provide various subsets of observables

for which an LHV model can be provided for singlet statistics [Rai, Gazi, Banik,

Das and Kunkri, 2012].

2.1 Introduction

A violation of the Bell-CHSH inequality [Bell, 1964; Clauser et al., 1969] by statis-

tics generated from local measurements performed on an entangled state shared

between two spatially separated parties certifies such quantum state as nonlocal.

The singlet state of two qubits (an EPR state) exhibits maximum nonlocality

[Cirel’son, 1980] for proper choices of local observables. Although for pure entan-

gled states the degree of nonlocality is in direct proportion to the entanglement

30
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content of a quantum state, this is, in general, not true for mixtures of entangled

states [Gisin, 1991; Gisin and Peres, 1992; Popescu, 1994; Popescu and Rohrlich,

1992]. Werner first gave the counterintuitive example of mixed entangled states

(popularly known as Werner states) [Werner, 1989] whose statistics when sub-

jected to projective measurements, can be generated by a local hidden variable

(LHV) model. A similar example for tripartite entangled state which can be sim-

ulated by a local hidden variable model was first provided in a work by Toth and

Acin Toth and Acin [2006]. A good review of research on hidden variable theories

can be found in Genovese [2005].

Interestingly, Toner and Bacon [Toner and Bacon, 2003] in the year 2003, gave a

twist to earlier studies, by providing a model for singlet simulation which requires

only 1 cbit of communication supplemented with local variables. Soon after, Cerf

et al [Cerf et al., 2005] showed that 1 nl -bit (single PR-Box) is also sufficient for

singlet simulation. Motivated by these works, recently, another model has been

provided for singlet simulation which uses (possibly) signalling resource, namely

Sp correlations, which suggests a trade off relation between required communica-

tion and local randomness in measurement results [Hall, 2010a; Kar et al., 2011].

Degorre et al. [Degorre et al., 2005, 2007] could map the problem of simulating

entangled states to distributed sampling problems. A more through review of sim-

ulation of entangled state statistics from communication complexity point of view

can be found in [Buhrman et al., 2010]. Few other recent works [Banik, Gazi,

Das, Rai and Kunkri, 2012; Barrett and Gisin, 2011; Hall, 2010b, 2011] show that

lack of free will can also be considered as a resource for singlet simulation. There

are also some efforts in solving the difficult problem of simulating multipartite

entanglement and non-maximally bipartite entangled states either by use of com-

munication or by nonlocal (no-signaling) resources Brunner et al. [2008, 2010]. All

these various approaches have been deepening our understanding about quantum

correlation and its use as a physical resource in various information processing

tasks.

As of providing local variable models for class of entangled states, in a seminal

work in the year 2002, Barrett Barrett [2002] generalized the work of Werner

Werner [1989], by construting a LHV model for any positive-operator-valued mea-

surements at the expense of the weight associated with singlet in Werner state.

Motivated by these works we pose the problem from opposite direction i.e. rather

than weakening the (singlet) state we search for the class of (weakened) dichotomic
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observable (POVM) for which local model can be provided. In particular, here

we provide the subset of the most general two outcome measurements represented

by positive operator value measure (POVM) and present local models for singlet

statistics generated from them. We provide some sets of local observable which are

optimal for the protocol we have suggested. First we show that, if observable on

any one side is sufficiently restricted (deviates from ideal projective measurement),

resulting statistics for the singlet state has a local hidden variable model. Next, we

provide another model which is symmetric in a sense that observable on both the

sides are put to a similar type of restriction. Finally, we identify a more general set

of observable for which LHV models exists with some further restrictions. Before

we derive our results, in the followings section, we give a mathematical description

of a general two-outcome POVMs.

2.2 General two-outcome POVM

Generalized quantum observables are described by POVMs [Busch et al., 1995,

1996]. For finite, say n, outcome measurements on a d-dimensional state space a

POVM is a collection of selfadjoint operators {Ei} acting on a complex Hilbert

space Cd satisfying the conditions: (i) 0 ≤ Ei ≤ I for all i, and (ii)
∑

iEi = I,

where i ∈ {1, 2, ..., n}. A measurement of such an observable {Ei} on a quantum

state ρ results in any one of the n possible outcomes; the probability of an oc-

currence of i-th outcome (termed as clicking of i-th effect) is Tr[ρEi]. A subclass

of these type of general measurement has an interesting physical interpretation as

unsharp spin properties, introduced by P. Busch [Busch, 1986a,b].

In this chapter, we consider general two-outcome POVMs {E, I − E} acting on

C2 (state space of a qubit). Effect E is characterized by some parameters, say,

a0 ∈ R (a scalar) and ~a ∈ R3 (a vector). We denote norm of ~a by µ. Then, the

selfadjoint property along with the condition 0 ≤ E ≤ I implies that E can be

expressed as

E =
1

2
[a0I + µâ · ~σ] (2.1)

0 ≤ a0 ≤ 2 (2.2)

0 ≤ µ ≤ min{a0, 2− a0} (2.3)
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where â · ~σ = axσx + ayσy + azσz. Then, the corresponding operator I −E is also

selfadjoint and satisfies the requirement 0 ≤ I − E ≤ I. Thus, the Eq.(2.1) along

with the conditions (2.2) and (2.3), supplemented with an arbitrary direction â,

completely determine a two-outcome POVM {E, I−E} acting on C2. The region

feasible for parameters a0 and µ for defining such an effect E{a0, µ, â} is illustrated

in Fig.(2.1).

P (1,1)

μ

O

I

(0,0) (2,0)U (1,0)

a0

Figure 2.1: Parameter a0 (µ) varies along the horizontal (vertical) axis. Any
point (a0, µ) laying in the shaded triangular region POI (together with an arbi-
trary parameter â) determines a two-outcome POVM {E, I−E}. Points on the
dashed line PU represent unsharp spin measurements. Point P(1, 1) represent
ideal projective measurements.

An interesting application of general two-outcome measurements considered here

is in the study of spin properties of spin-1
2

systems. In this context, P. Busch

[Busch, 1986a,b] first showed that a subclass of general two-outcome POVMs can

be interpreted as measurement of unsharp-spin property of spin-1
2

particles. Under

the condition of rotation covariance, parameters {a0, µ} is decoupled from â which

can then be interpreted as orientation of the measuring device. Further, condition

of symmetry under a rotation π of the measuring device gives a0 = 1. Thus, effect

operators for an unsharp spin observable is of the form Eµ
±(â) = 1

2
[I±µâ ·~σ]. The

spectral decomposition of positive operators Eµ
±(â) is

Eµ
±(â) = (

1± µ
2

)
1

2
[I + â.~σ] + (

1∓ µ
2

)
1

2
[I − â.~σ]
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where 1
2
[I+â.~σ] and 1

2
[I−â.~σ] are one dimensional spin projection operators on the

Hilbert space C2. Now, the quantity 1+µ
2

(1−µ
2

) can be suitably interpreted as de-

gree of reality (unsharpness) of outcomes obtained from a spin measurement along

direction â. From this representation it is clear that the POVM {Eµ
+(â), Eµ

−(â)} is

a smeared version of the projective measurement {1
2
[I + â.~σ], 1

2
[I − â.~σ]}—in case

of projective measurements the unsharp parameter µ = 1.

Another important property is that under suitable conditions two POVMs can

be jointly measurable [Kraus, 1983]. Two POVMs of the form {E1, I − E1}
and {E2, I − E2} are jointly measurable if there exits a four-outcome POVM

{E12, E1̄2, E12̄, E1̄2̄} such that it can reproduce the correct marginals, i.e., E1 =

E12 + E12̄ and E2 = E12 + E1̄2. For unsharp spin observable it has been shown

that [Busch, 1986b] (also see the review [Kar and Roy, 1999]) two observables

parameterized by, say, (µ1, â1) and (µ2, â2) are jointly measurable if and only if

‖µ1â1 +µ2â2‖+‖µ1â1−µ2â2‖ ≤ 2. On considering unsharp parameter for both the

spin observables to be same i.e., µ1 = µ2, along with the fact ‖â1+â2‖+‖â1−â2‖ ≤
2
√

2 for any pair of unit vectors â1 and â2, it is easy to conclude that if the unsharp

parameters µ1 = µ2 ≤ 1√
2

then joint measurement of unsharp spin property can

be realized for any such pair of directions.

2.3 LHV model for singlet statistics for two out-

come POVMs

Suppose, two spatially separated parties Alice and Bob share one qubit each from

a singlet state

ρAB =
1

4
[I ⊗ I − σx ⊗ σx − σy ⊗ σy − σz ⊗ σz].

Let Alice’s (Bob’s) observable be a most general two-outcome POVM EA[a0, µA, â]

(EB[b0, µB, b̂]), defined by Eq.(1). If the effect EA(B) clicks we denote the outcome
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by ‘yes ’ otherwise ‘no’. Then joint outcome probabilities are following:

PAB(yes, yes) =
1

4
[a0b0 − µAµBâ · b̂] (2.4)

PAB(yes, no) =
1

4
[a0(2− b0) + µAµBâ · b̂]

PAB(no, yes) =
1

4
[(2− a0)b0 + µAµBâ · b̂]

PAB(no, no) =
1

4
[(2− a0)(2− b0)− µAµBâ · b̂]

2.3.1 Models for two-outcome measurements

Violation of the Bell-CHSH inequality [Bell, 1964; Clauser et al., 1969] implies

that there can be no LHV model for the singlet statistics generated by projective

measurements by both the parties. Therefore, the statistics of the singlet can have

a LHV model only if general two outcome POVMs considered here are restricted

(deviate from ideal projective measurements) in some way or the other. Following

Werner’s local model for some mixed entangled states [Werner, 1989], we provide

two LHV models for singlet state under certain restrictions on parameters of two

outcome POVMs. In both type of models vectors λ̂ = (sin θ cosφ, sin θ sinφ, cos θ)

uniformly distributed over the unit sphere, are the local variables preshared be-

tween Alice and Bob.

2.3.1.1 A fully biased model Mfb:

Let, Bob’s observable EB(b0, µB, b̂) satisfy restriction µB ≤ 1
2
min{b0, 2 − b0} but

there is no restriction on Alice’s observables, see Fig(2.2).

O

I

P

(0,0) (2,0)U (1,0)

(1,1)

a0

μA

O

I

P

(0,0) (2,0)U (1,0)

(1,1)

b0

μB

M (1,1/2)

O

I

P

(0,0) (2,0)U (1,0)

(1,1)

a0

μA

O

I

P

(0,0) (2,0)U (1,0)

(1,1)

b0

μB

M (1,1/2)

Figure 2.2: Alice’s (Bob’s) parameters can take values from the dark gray tri-
angular region on left (right). Alice’s parameters a0 and µA can take any possible
value, but Bob’s parameters b0 and µB are restricted to come from the region
MOI.
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Alice, for her observable EA[a0, µA, â], declares ‘yes’ with a probability

PA
λ̂

(yes) =
a0

2
+

1

2
µA cosα (2.5)

where α is angle between direction â and λ̂. On the other hand, for observable

EB[b0, µB, b̂], Bob declares ‘yes’ with a probability

PB
λ̂

(yes) =
b0

2
− µB sgn(cos β) (2.6)

where β is the angle between the direction b̂ and λ̂, and sgn(x) = +1 (−1) for x ≥
0 (x < 0).

The joint probability of the outcome (yes, yes), can be calculated from

PAB
lhv (yes, yes) =

∫
ρ(λ̂) PA

λ̂
(yes) PB

λ̂
(yes) dλ̂ (2.7)

where ρ(λ̂) is the considered (uniform) distribution of the hidden variable λ̂. Eval-

uating the above integral gives

PAB
lhv (yes, yes) =

1

4
[a0b0 − µAµBâ · b̂] (2.8)

which exactly matches with the quantum mechanical prediction for the outcome

(yes, yes). The desired quantum mechanical probabilities for the other possible

outcomes easily follows, for example, PAB
lhv (yes, no) is obtained simply by replace-

ment PB
λ̂

(yes)→ PB
λ̂

(no) = 1− PB
λ̂

(yes) in the integrand of the Eq.(2.7).

2.3.1.2 A fully symmetric model Mfs:

Let Alice’s and Bob’s observables satisfy following restriction (see Fig.(2.3))

µA ≤
1√
2

min{a0, 2− a0}

µB ≤
1√
2

min{b0, 2− b0}

Alice declares ‘yes’, for her observable EA[a0, µA, â], with a probability

PA
λ̂

(yes) =
a0

2
+

1√
2
µA cosα (2.9)
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Figure 2.3: Alice’s (Bob’s) parameters can take values from the dark gray
triangular region on left (right). Alice’s parameters a0 and µA as well as Bob’s
parameters b0 and µB are restricted in the same way and come from the triangu-
lar region MOI on the left and right respectively.

where α is angle between direction â and λ̂.

Where else Bob declares ‘yes’, for his observable EB[b0, µB, b̂], with a probability

PB
λ̂

(yes) =
b0

2
− 1√

2
µB sgn(cos β) (2.10)

where β is the angle between the direction b̂ and λ̂, and sgn(x) = +1 (−1) for x ≥
0 (x < 0). Like in the fully biased model Mfb, we find that this model (Mfs) also

simulates the correct statistics for the singlet.

If we consider unsharp spin properties on both sides with uniform value of µA

and µB and also assume any pair are jointly measurable ??] on both sides, then

the conditions of the model Mfs are automatically satisfied and hence this LHV

model Mfs can simulate the singlet statistics for any arbitrary pair of respective

directions â and b̂ for Alice and Bob.

2.3.2 Measure of restriction on observable

By considering that observables of Alice and Bob are picked from a uniform dis-

tribution of all possible two-outcome POVMs, we can define a measure r for re-

striction on the observables of any of the two parties in the following way. (see

Fig.(2.2) and Fig.(2.3))

r =

[
1− Area (MOI)

Area (POI)

]
× 100 (2.11)
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Now, one can easily calculate that in the model Mfb (Mfs), there is 0% (29.3%)

restriction on Alice’s observables wherelse Bob’s observables are restricted by 50%

(29.3%).

Another interesting observation is that model Mfb and Mfs belong to a general

class of LHV models, {Mκ : κ ≥ 0}.

Under the restrictions,

µA ≤ κ min{a0, 2− a0} (2.12)

µB ≤
1

2κ
min{b0, 2− b0} (2.13)

Alice declares “yes” with a probability

PA
λ̂

(yes) =
a0

2
+

1

2κ
µA cosα (2.14)

Bob declares ‘yes’ with a probability

PB
λ̂

(yes) =
b0

2
− κµB sgn(cos β) (2.15)

For any nonnegative value of κ we get a LHV model—Mfb (Mfs) correspond to

κ = 1 (κ = 1√
2
). In Fig(2.4) the two curves show the % restriction on Alice’s

and Bob’s observable for LHV models corresponding to different values of κ. The

intersection point of two curves correspond to the symmetric model Mfs. Observe

that κ = 1
2

correspond to another fully biased model, say M′fb, which is same as

Mfb except that conditions on Alice’s and Bob’s observables are interchanged. In

fact all the models for which κ ∈ (0, 1
2
]∪[1,∞) are fully biased models, however one

can immediately observe that within this subclass, either Mfb or M′fb is sufficient

to simulate any other fully biased model. Thus only the subclass {Mκ : κ ∈
[1/2, 1]} contains tight LHV models in a sense that they can capture any varying

degree of restrictions on Alice’s and Bob’s observables.

2.3.3 A different class of model

In previous cases, we put restriction on the observable separately on both sides.

Now we put the following restriction on the observable where one of the restrictions
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Figure 2.4: Black (Gray) curve show percentage restriction on Alice’s (Bob’s)
observable for LHV models corresponding to different values of κ. The intersec-
tion point of two curves at κ = 1√

2
correspond to the completely symmetric LHV

model Mfs. Fully biased model Mfb (M′fb) correspond to κ = 1
2 (κ = 1). All

the models for κ ∈ (0, 1
2 ]∪ [1,∞) are fully biased.

involves parameters of both sides;

1

η
≤ a0 ≤ 2− 1

η
(2.16)

µAµB ≤
1

2η
min{b0, 2− b0} (2.17)

where η ≥ 1. Alice and Bob now can simulate singlet statistics according to the

following protocol

PA
λ̂

(yes) =
a0

2
+

1

2η
cosα (2.18)

PB
λ̂

(yes) =
b0

2
− ηµAµB sgn(cos β) (2.19)

But this model is obviously non-local as Bob’s output involves parameters of ob-

servable on both sides. But the model can be made local for a given η and fixed

µA. In this case there is no restriction on direction â of Alice’s POVM. It might

seem that by increasing the value of η the range of a0 can be extended but then

due to the condition (2.17), the range of µB is also restricted accordingly. So in

some sense in this model a0 and µB maintain a complementary relation for a given

b0.
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2.4 Conclusion

Simulation of quantum statistics for Werner state by LHV has been an interesting

area for understanding the physics of entanglement [Barrett, 2002; Gisin, 1991;

Gisin and Peres, 1992; Popescu, 1994; Popescu and Rohrlich, 1992; Werner, 1989].

We have studied the cases where LHV simulation is possible for singlet state.

We find the optimal set of two outcomes observable for which singlet simulation

by LHV is possible under the suggested protocol. It is also interesting that for

uniform unsharp parameter, the joint measurability of unsharp spin property on

both sides implies LHV model for singlet. It will be interesting to study whether

the set can be enlarged with respect to different LHV model.



Chapter 3

Leggett-type nonlocal realistic

inequalities

After discussing about local-realistic models for entangled states in the previ-

ous chapter, in the present chapter we discuss Leggett’s nonlocal-realistic model

for entangled states. Leggett’s model leads to experimentally testable inequali-

ties which can be violated by quantum correlation. The Leggett-type nonlocal

realistic inequalities that have been derived prior to our work [Rai, Home and

Majumdar, 2011] are all contingent upon suitable geometrical constraints to be

strictly satisfied by the spatial arrangement of the relevant measurement settings.

This undesirable restriction is removed by deriving appropriate forms of nonlocal

realistic inequalities, one of which involves the fewest number of settings compared

to all such inequalities derived earlier. The way such inequalities would provide a

logically firmer basis for a clearer testing of a Leggett-type nonlocal realistic model

vis-a-vis quantum mechanics is explained.

3.1 Introduction

Subsequent to the plethora of studies confirming experimental falsification of Bell-

type inequalities [Aspect, 1999], thereby ruling out the local realist models in favor

of quantum mechanics (QM), the next issue is whether the question of compati-

bility between QM and its plausible nonlocal realist models can be subjected to a

deeper scrutiny. To this end, Leggett [Leggett, 2003] showed an incompatibility

between QM and a testable inequality derived for a class of nonlocal realist models

41
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which we shall refer to as the Leggett-type nonlocal realist (LNR) model. This,

in turn, has motivated a number of theoretical as well as experimental works from

different perspectives [Aspect, 2007; Branciard et al., 2008, 2007; Colbeck and Ren-

ner, 2008; Eisaman et al., 2008; Groblacher et al., 2007; Lee et al., 2011; Leggett,

2008; Paterek et al., 2007; Paternostro and Jeong, 2010; Romero et al., 2010], in-

cluding various versions of LNR inequalities. These inequalities involve correlation

functions of joint polarization (spin) properties of two spatially separated photons

(spin-1
2

particles), and have been largely shown to be experimentally violated for

the polarization degrees of freedom of photons prepared in a maximally entangled

state.

In the initial experiment by Gröblacher et al. [Groblacher et al., 2007], though, the

form of the LNR inequality that was tested necessitated assuming the invariance

of the correlation functions under simultaneous rotation (by the same angle) of the

axis of each of the two polarizers. This additional assumption was, however, not

required in the subsequent works [Branciard et al., 2008, 2007; Paterek et al., 2007]

that showed empirical violation of the suitably derived forms of LNR inequalities.

Nevertheless, an undesirable feature besets all such studies since different forms of

LNR inequalities that have been derived and tested to date hold good only if cer-

tain geometrical constraints are exactly satisfied by the spatial arrangement of the

relevant measurement settings. For example, appropriate to any such inequality,

relative orientations of the planes of the relevant measurement settings need to

satisfy suitable conditions such as that of orthogonality. Hence, in the experimen-

tal tests of these inequalities, even an infinitesimal error in satisfying the required

restrictions would make it logically problematic to draw any firm conclusion about

the falsification of the LNR model [Colbeck and Renner, 2008]. This loophole is

sought to be removed in our work by deriving within the general framework of

the LNR model two different forms of LNR inequalities that hold good for any

possible geometrical alignment of the experimental setup. Further, it is important

to note that the QM violation of such inequalities can be demonstrated within the

experimental threshold visibility already achieved. The other significant feature

is that one of our LNR inequalities involves (3 + 3) number of settings which is

the least number of settings achieved so far compared to all the LNR inequalities

derived earlier.
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3.2 Leggett’s model

We begin by briefly recapitulating the essence of the LNR model [Leggett, 2003,

2008] which regards the whole ensemble of photon pairs emitted from a source to

be a disjoint union of subensembles that are assumed to have the following fea-

tures: (i) In any such subensemble, each pair of photons is characterized by definite

values of preassigned polarizations û and v̂ so that the whole ensemble corresponds

to a distribution of values of û and v̂ denoted by, say, D(û, v̂). (ii) For any given

pair belonging to such a subensemble, individual outcomes (denoted by A and

B) of polarization measurements on each member of the pair along directions,

say, â and b̂ respectively are assumed to be determined by a hidden variable, say,

λ whose values are distributed over the pairs comprising the given subensemble

with the corresponding distribution function being denoted by ρ(û,v̂)(λ). (iii) The

outcome of polarization measurement along â (b̂) for any individual photon in one

of the two wings may be non-locally dependent on the choice of the measurement

setting pertaining to its spatially separated partner in the other wing, but the

statistical result for a given subensemble obtained by averaging over such effects

is assumed to satisfy the Malus law. This entails that the relevant mean value

depends only on the local setting. Thus, such mean values of outcomes of polar-

ization measurements for the subensembles characterized by û and v̂ pertaining to

the two wings can respectively be written as A(û) =
∫
A(â, b̂, λ)ρ(û,v̂)(λ)dλ = û · â,

and B(v̂) =
∫
B(b̂, â, λ)ρ(û,v̂)(λ)dλ = v̂ · b̂. Then the experimentally observable

polarization correlation function for the whole ensemble is expressible as 〈AB〉 =∫∫
AB(û, v̂)D(û, v̂)dûdv̂ where AB(û, v̂) =

∫
A(â, b̂, λ)B(b̂, â, λ)ρ(û,v̂)(λ)dλ.

3.3 Derivation of geometrical constraint-free

Leggett-type inequalities

Let us consider that for a pair of emitted photons, A = ±1 and B = ±1 are the

outcomes observed by two spatially separated partners Alice and Bob performing

polarization measurements on each of the photons in the directions â and b̂ re-

spectively. An outcome +1 (−1) is associated with a photon getting transmitted

(absorbed) through (in) the relevant polarizer. Then, one can easily verify that

the algebraic identity −1 + |A + B| = AB = 1 − |A − B| holds true for all the
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possible outcomes of Alice and Bob. Subsequently, on averaging this relation over

any one of the subensembles (characterized by (û, v̂)) mentioned earlier, one ob-

tains −1+ |A+B| = AB = 1−|A−B|, where the bar notation denotes averaging

over the hidden variables within the given subensemble. Since the average of the

modulus is greater or equal to the modulus of the averages, therefore, at the level

of subensembles one gets, −1+|A+B| ≤ AB ≤ 1−|A−B|, which can be rewritten

as the following inequality

|A±B| ≤ 1± AB. (3.1)

Next, à la Branciard et al. [Branciard et al., 2008], consider one measurement set-

ting â, with the corresponding outcome A, for Alice, and two measurement settings

b̂, b̂′, with the corresponding outcomes B,B′ for Bob. Applying the inequality (3.1)

for the sets {A,B} and {A,B′} respectively, together with the use of the triangle

inequality, one can obtain the following inequality |AB ± AB′| ≤ 2 − |B ∓ B′|.
Then, by invoking the Malus law on the right hand side of the preceding inequality

and averaging over the distribution D(û, v̂), one gets

|〈AB〉+ 〈AB′〉| ≤ 2−
∫∫
|v̂ · (b̂− b̂′)|D(û, v̂)dûdv̂ (3.2)

|〈AB〉 − 〈AB′〉| ≤ 2−
∫∫
|v̂ · (b̂+ b̂′)|D(û, v̂)dûdv̂ (3.3)

Now, at this stage, comes the crucial ingredient of our derivation by considering

two different categories of settings that would enable us to derive the desired

forms of the LNR inequalities. Note that in this derivation there is no geometrical

restriction on the spatial arrangement, once any particular type of combination of

settings is specified.

3.3.1 Category I settings

Category I comprising of suitable combinations of measurement settings used for

deriving our first LNR inequality, pertains to the inequality (3.2). Here we consider

the combinations of settings {(âi, b̂i), (âi, b̂′i)} where i ∈ {1, 2, 3} and, say, βi ∈
(−π, π) is the angle between the pair (b̂i, b̂′i). Let b̂i − b̂′i = 2 sin(βi

2
)n̂i where

the unit vectors n̂i’s are linearly independent. Then, from (3.2), after adding the

corresponding inequalities for the combinations of settings {(âi, b̂i), (âi, b̂′i)}, it
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follows that

1

3

∑
i

|〈AiBi〉+ 〈AiB′i〉| ≤

2− 2

3
sin(

β∗
2

)

∫∫
Fn(v̂)D(û, v̂)dûdv̂ (3.4)

where, β∗ = min{|β1|, |β2|, |β3|} and Fn(v̂) =
∑

i |v̂ · n̂i|.

3.3.2 Category II settings

Category II comprising appropriate combinations of measurement settings involved

in our second LNR inequality, pertains to the inequality (3.3). Here we consider the

combinations of settings {(âi, b̂i), (âi, b̂i⊕1)} where ⊕ represents addition modulo

3, and i ∈ {1, 2, 3}. Let δi ∈ (−π, π) be the angle between the pair (b̂i, b̂i⊕1),

whence b̂i + b̂i⊕1 = 2 cos( δi
2

)m̂i where m̂i’s represent three linearly independent

unit vectors. Then, from (3.3), after adding the corresponding inequalities for the

combination of settings {(âi, b̂i), (âi, b̂i⊕1)}, it follows that

1

3

∑
i

|〈AiBi〉 − 〈AiBi⊕1〉| ≤

2− 2

3
cos(

δ∗

2
)

∫∫
Fm(v̂)D(û, v̂)dûdv̂ (3.5)

where δ∗ = max{|δ1|, |δ2|, |δ3|} and Fm(v̂) =
∑

i |v̂ · m̂i|.

3.3.3 Lower bound for the functions Fn(v̂) and Fm(v̂)

Note that the right hand sides of the inequalities (3.4) and (3.5) still involve the

unobservable supplementary variables û and v̂. Thus, in order to recast them in

experimentally verifiable forms, we need to derive the respective lower bounds, say

Ln and Lm, for the functions Fn(v̂) and Fm(v̂). These lower bounds are obtained

by using the following Theorem.

Theorem: On the Poincaré sphere, given three linearly independent unit vectors

ê1, ê2, ê3 and a variable unit vector v̂, the minimum value, say L, of the function

F (v̂) = |ê1 · v̂|+ |ê2 · v̂|+ |ê3 · v̂| is given by the formula L = |ê1·(ê2×ê3)|
max{|ê1×ê2|,|ê2×ê3|,|ê3×ê1|} .
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Proof : The minimum value of F (v̂) would not depend on the choice of the co-

ordinate axes. Thus, for convenience, let the X axis lie along ê1 and the XY

plane contain ê2. Therefore, according to our choice, êi’s can be represented as

follows: ê1 = (1, 0, 0), ê2 = (b1, b2, 0), ê3 = (c1, c2, c3) where b2, c3 6= 0. Further,

we observe that the three great circles Ci, defined by êi · v̂ = 0, divide the surface

of the Poincaré sphere into 8 non-overlapping (except on the boundaries) regions,

Rξ1ξ2ξ3 , defined by the constraints ξ1ê1 · v̂ ≥ 0, ξ2ê2 · v̂ ≥ 0, and ξ3ê3 · v̂ ≥ 0, where

ξ1, ξ2, ξ3 ∈ {+,−} [see Fig. 3.1].

Let us first minimize the function F (v̂) in any one of the restricted regions, say,

R+++ where it takes the form, F (v̂+++) = ê1 · v̂ + ê2 · v̂ + ê3 · v̂ (here v̂+++ denote

vectors belonging to the region R+++). We first show that F (v̂+++) cannot attain

the minimum at some interior point of R+++. Note that, since F (v̂+++) is a

smooth function, showing that there is no stationary point of local minimum in

the interior of R+++ would be sufficient. For this, let us consider a function

f(v̂) = ê1 · v̂+ ê2 · v̂+ ê3 · v̂ defined over all the points of the Poincaré sphere. Note

that, f(v̂) = F (v̂) for any v̂ ∈ R+++. Let v̂ = (sin θ cosφ, sin θ sinφ, cos θ) with 0 ≤
θ ≤ π and −π < φ ≤ π. Then, f(v̂) = f(θ, φ) = p sin θ cosφ+ q sin θ sinφ+ r cos θ

where p = 1 + b1 + c1, q = b2 + c2, and r = c3. At the stationary points of f(θ, φ),

∂φf = sin θ(−p sinφ+ q cosφ) = 0 and ∂θf = cos θ(p cosφ+ q sinφ)− r sin θ = 0.

However, among such stationary points, the point belonging to the interior of the

region R+++ would satisfy (∂φφf)(∂θθf) − ∂φθf > 0 and ∂θθf < 0, which is the

condition of maximum. Thus, F (v̂+++) can attain its minimum value only on

some boundary point of the region R+++.

Next, we find that the minimum value of F (v̂+++) is actually attained at any one

or more vertices of the triangular region R+++; these vertices are given by v̂1 =

sgn(b2c3) ê2×ê3
|ê2×ê3| , v̂2 = sgn(b2c3) ê3×ê1

|ê3×ê1| , v̂3 = sgn(c3) ê1×ê2
|ê1×ê2| where sgn(z) = +1(−1)

for z > 0(z < 0). Here, first note that, the intersection of Ci with R+++ defines a

side of the triangle R+++. Now, if we restrict the domain of f(v̂) on a great circle

Ci, then it can be shown that, for any i, there is no stationary point of minimum of

f(v̂) in the interior of the corresponding side of the triangle R+++ (see Appendix

A). Hence, now we can conclude that the minimum value of F (v̂+++) is attained

only at some vertices of the region R+++.

Note that the above proven result is true for any arbitrarily specified set of lin-

early independent unit vectors {ê1, ê2, ê3} i.e., if one chooses, say, some other

set {ê∗1, ê∗2, ê∗3} then the minimum value of the corresponding function F ∗(v̂) =
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|ê∗1 · v̂| + |ê∗2 · v̂| + |ê∗3 · v̂| in a suitably defined region R∗+++ is attained at one or

more of its vertices.

X Y

Z

e1
^

v̂
v̂2

v´̂2
v̂1

v´
^

1

v´^
3

v̂3

e
3

^

e2
^

R +++

C1

C3

C2

Figure 3.1: On the Poincaré sphere, êi’s for i ∈ {1, 2, 3} are three linearly
independent unit vectors and v̂ is a variable unit vector. Three great circles Ci’s
lie in respective planes orthogonal to êi’s. The intersection points of two great
circles Ci⊕1 and Ci⊕2 are denoted by v̂i and v̂i′ . The triangular region R+++

with vertices v̂1, v̂2, v̂3 is defined by relations ê1 · v̂ ≥ 0, ê2 · v̂ ≥ 0, and ê3 · v̂ ≥ 0.

Finally, with the help of the above shown result and exploiting the symmetries

of the function F (v̂) we show that the desired minimum value is min[F (v+++)].

For this, let us consider a repartitioning of the set of points on the Poincaré

sphere defined by Rχ1χ2χ3

ξ1ξ2ξ3
= {v̂ : ξi(χiêi) · v̂ ≥ 0, ∀i ∈ {1, 2, 3}} for some fixed

χ1, χ2, χ3 ∈ {+,−} (Observe that there are 8 such ways of partitioning and in

the new notation the partition represented by Rξ1ξ2ξ3 ≡ R+++
ξ1ξ2ξ3

). Then, we note

the following two features for above type of repartition: (i) The relevant function

F χ1χ2χ3(v̂) = |(χ1ê1) · v̂|+ |(χ2ê2) · v̂|+ |(χ3ê3) · v̂| remains invariant for any choice

of χi’s ∈ {+,−} and (ii) Rχ1χ2χ3 ≡ R+++
χ1χ2χ3

∼= Rχ1χ2χ3
+++ . Since earlier we have

shown that for any partition the minimum value of F ∗(v̂+++) in the corresponding

region R∗+++ can only be attained at one or more of its vertices, applying the

property (i) and (ii) we can now conclude that minimum value of F (v̂) in a region
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Rξ1ξ2ξ3 for any ξ1, ξ2, ξ3 ∈ {+,−} is attained at one or more of its vertices. Thus,

the required global minimum value L is attained at some point(s) belonging to

the set {±v̂1,±v̂2,±v̂3}. Now, the use of the symmetry F (−v̂) = F (v̂) gives

L = min{F (v̂1), F (v̂2), F (v̂3)} = |ê1·(ê2×ê3)|
max{|ê1×ê2|,|ê2×ê3|,|ê3×ê1|} .�

3.3.4 Two testable forms of LNR inequalities

By applying the above proven theorem, together with the use of the normaliza-

tion relation
∫ ∫

D(û, v̂)dûdv̂ = 1, to the inequalities (3.4) and (3.5), we obtain

respectively the following two forms of experimentally testable LNR inequalities

1

3

∑
i

|〈AiBi〉+ 〈AiB′i〉| ≤ 2− 2

3
sin(

β∗
2

)× Ln (3.6)

1

3

∑
i

|〈AiBi〉 − 〈AiBi⊕1〉| ≤ 2− 2

3
cos(

δ∗

2
)× Lm (3.7)

For these two experimentally testable forms of the LNR inequalities, respective

lower bounds Ln,m for functions Fn,m(v̂) = |ê1 · v̂|+ |ê2 · v̂|+ |ê3 · v̂| with êi’s corre-

sponding to n̂i’s or m̂i’s for Fn or Fm respectively, can be equivalently expressed

by the following convenient expression (see Appendix B for a proof)

Ln,m(α12, α23, α31) =

(
1−
∑

1≤i≤3,
j=i⊕1

cos2 αij + 2
∏

1≤i≤3,
j=i⊕1

cosαij

) 1
2

max{sinα12, sinα23, sinα31}
(3.8)

where αij ∈ (0, π) denotes the angle between a pair of vectors {êi, êj} for i, j ∈
{1, 2, 3}.

3.3.5 Discussion of details in the proof of the minimum

value of F (v̂+++) in the triangular region R+++

Recall that an expression for the function f(v̂) = ê1 · v̂+ ê2 · v̂+ ê3 · v̂ defined over

the points of the Poincaré sphere in terms of (θ, φ) coordinates (0 ≤ θ ≤ π and

−π < φ ≤ π), where p = 1 + b1 + c1, q = b2 + c2 and r = c3, is

f(θ, φ) = (p cosφ+ q sinφ) sin θ + r cos θ (3.9)
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Now, analyzing this expression, we in detail show the following

3.3.6 The minimum value of F (v̂+++) is not attained at any

interior point of the region R+++

At the stationary points of f(θ, φ) we have

∂φf = sin θ(−p sinφ+ q cosφ) = 0 (3.10)

∂θf = cos θ(p cosφ+ q sinφ)− r sin θ = 0 (3.11)

Therefore, at some stationary point, say (θ0, φ0), in the interior of R+++, since

sin θ0 6= 0, the following equations must be satisfied

− p sinφ0 + q cosφ0 = 0 (3.12)

cos θ0(p cosφ0 + q sinφ0) = r sin θ0 (3.13)

Then, at (θ0, φ0) we obtain

[(∂φφf)(∂θθf)− ∂φθf ](θ0,φ0) = {(p cosφ0 + q sinφ0)2 + r2} sin2 θ0 > 0 (∵ r = c3 6= 0)

(∂θθf)(θ0,φ0) = −f(θ0, φ0) < 0

Thus, given a stationary point (θ0, φ0), it must be a point of maximum. Conse-

quently, the minimum cannot lie in the interior of the region R+++.
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3.3.7 The minimum value of F (v̂+++) is not attained at any

interior point on the sides of the triangular region

R+++

Let us first consider the side of the triangle R+++ on the corresponding great circle

C1. Note that the interior points of this side is defined by

ê1 · v̂ = 0 ⇒ sin θ cosφ = 0 (3.14)

ê2 · v̂ > 0 ⇒ (b1 cosφ+ b2 sinφ) sin θ > 0 (3.15)

ê3 · v̂ > 0 ⇒ (c1 cosφ+ c2 sinφ) sin θ

+c3 cos θ > 0 (3.16)

Now, the inequality (3.15)⇒ sin θ 6= 0. Therefore, from Eq.(3.14) one can conclude

that cosφ = 0 ⇒ φ = π
2

or −π
2
. Next, substituting cosφ = 0 in the inequality

(3.15) one gets b2 sin θ sinφ > 0. Then, it follows that φ = sgn(b2)π
2

(since sin θ >

0) thereby reducing the expression for the function f at the interior points of this

side of the triangle R+++ to

f(θ, sgn(b2)
π

2
) = f(θ) = sgn(b2)q sin θ + r cos θ (3.17)

Therefore, one gets d2f
dθ2

= −f(θ) < 0 which implies that a stationary point in the

interior of this side cannot be a point of minimum. Thus, the minimum value of

f can be attained only at some end point(s) of this side.

For the remaining two sides of the triangle R+++ on the respective great circles

C2 and C3, similar analyses can be done by choosing the relevant convenient co-

ordinate axes. For the side lying on C2 (C3), the convenient choice is the X-axis

to be along ê2 (ê3) and the X−Y plane containing ê3 (ê1). Then, it is again found

that the minimum value of f on the remaining two sides can only occur at some

end point(s) of these sides.
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3.4 Maximum violation of the LNR inequality

(3.6)

Let us express the LNR inequality (3.6) given in the main text in the following

form

SAB(â1, â2, â3, b̂1, b̂2, b̂3, b̂′1, b̂′2, b̂′3) ≡ 1

3

∑
i

|〈AiBi〉+

〈AiB′i〉|+
2

3
sin(

β∗
2

)× Ln(n̂1, n̂2, n̂3)− 2 ≤ 0

(3.18)

where angles between Bob’s settings b̂i and b̂′i, i ∈ {1, 2, 3}, are βi’s with β∗ =

min{|β1|, |β2|, |β3|} and n̂i’s are unit vectors along the directions of b̂i − b̂′i. SAB
represents a real valued function of settings of Alice and Bob, while the settings

for which the quantum mechanically calculated value SAB > 0 would imply a

violation of the LNR inequality given by the preceding inequality (3.18).

For a pure singlet state, since the QM correlation function 〈AB〉 = −â · b̂, the

expression (3.18) reduces to

SAB(â1, â2, â3, b̂1, b̂2, b̂3, b̂′1, b̂′2, b̂′3) ≡ 1

3

∑
i

|âi ·

(b̂i + b̂′i)|+
2

3
sin(

β∗
2

)× Ln(n̂1, n̂2, n̂3)− 2 ≤ 0

(3.19)

From the inequality (3.19) one can see that as the first step towards maximizing

the function SAB, Alice’s settings âi’s should lie along the directions of b̂i + b̂′i.

Then, for maximizing SAB, it is sufficient to maximize the function

SB ≡
1

3

∑
i

|2 cos
βi
2
|+ 2

3
sin(

β∗
2

)× Ln(n̂1, n̂2, n̂3)− 2 (3.20)

involving only Bob’s settings.
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Next, note that as the function Ln(n̂1, n̂2, n̂3) appearing in the expression (3.20)

does not depend on the values of angles βi’s, one needs to maximize Ln over

the directions n̂i’s. Now, we proceed to show that max(Ln) = 1 when the set

{n̂1, n̂2, n̂3} is orthonormal. For this, let us first show that the expression for Ln

given in a form proved in the theorem of the main text, i.e,

Ln =
|n̂1 · (n̂2 × n̂3)|

max{|n̂1 × n̂2|, |n̂2 × n̂3|, |n̂3 × n̂1|}
(3.21)

is equivalent to the expression

Ln(α12, α23, α31) =

(
1−
∑

1≤i≤3,
j=i⊕1

cos2 αij + 2
∏

1≤i≤3,
j=i⊕1

cosαij

) 1
2

max{sinα12, sinα23, sinα31}
(3.22)

which is Eq.(3.7) of the main text. The equivalence between (3.21) and (3.22)

can be seen as follows. Say, 0 < α12 < π is the angle between unit vectors n̂1

and n̂2 (α23 and α31 are defined similarly). For convenience, we use the notation

αij for the angle between unit vectors n̂i and n̂j, where 1 ≤ i ≤ 3 and j = i ⊕ 1

(here ⊕ denotes addition modulo 3). Then, the denominators of the expressions

on the right hand side of the equations (3.21) and (3.22) are same since |n̂i× n̂j| =
| sinαij| = sinαij. Next, we show that the numerators of the two expressions are

also equal. For this, recall that n̂1 = (1, 0, 0), n̂2 = (b1, b2, 0), n̂3 = (c1, c2, c3)

(without any loss of generality). Then, we find that |n̂1 · (n̂2 × n̂3)| = |b2c3|.
Along with this, we also have the following relations n̂1 · n̂2 = b1 = cosα12,

n̂2 · n̂3 = b1c1 + b2c2 = cosα23, n̂3 · n̂1 = c1 = cosα31 and the normalization

relations b2
1 + b2

2 = 1, c2
1 + c2

2 + c2
3 = 1. By using these relations we find that

|n̂1·(n̂2×n̂3)| = |b2c3| = (1−cos2 α12−cos2 α23−cos2 α31+2 cosα12 cosα23 cosα31)
1
2

.

Now, we show that Ln ≤ 1 for which note that
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− cos2 α23 − cos2 α31 + 2 cosα12 cosα23 cosα31

= −{(cosα23 − cosα31)2 + 2 cosα23 cosα31(1− cosα12)}

= −{(cosα23 + cosα31)2 − 2 cosα23 cosα31(1 + cosα12)} ≤ 0

⇒ 1− cos2 α12 − cos2 α23 − cos2 α31 + 2 cosα12 cosα23 cosα31 ≤ sin2 α12

⇒ (1− cos2 α12 − cos2 α23 − cos2 α31 + 2 cosα12 cosα23 cosα31)1/2

sinα12

≤ 1 (3.23)

Similar other inequalities of the form (3.23) can also be obtained in which sinα12

in the denominator of the left hand side of (3.23) is replaced by sinα23 or sinα31.

Then, combining three such inequalities it can be easily seen that Ln ≤ 1 where

the maximum value of Ln = 1 occurs, for example, when α12 = α23 = α31 = π
2
.

Therefore, for maximizing SB given by Eq.(3.20) now it sufficient to maximize the

following expression

Sβ1,β2,β3 ≡
2

3

∑
i

| cos
βi
2
|+ 2

3
sin(

β∗
2

)− 2. (3.24)

Now, note that from Eq.(3.24) it can be seen that for any given β1, β2, β3 the value

of Sβ1,β2,β3 is bounded by Sβ∗,β∗,β∗

Sβ1,β2,β3 ≤ Sβ∗,β∗,β∗ = 2 cos
β∗
2

+
2

3
sin

β∗
2
− 2 (3.25)

Then, we obtain that max(Sβ1,β2,β3) ≈ 0.108 which occurs at |β1| = |β2| = |β3| =
β∗ ≈ 36.9o. �

Therefore, to summarize, the above derivation implies that the settings of Alice

and Bob for maximum QM violation of the LNR inequality (3.6) in the main text

are as follows: (i) Alice’s settings âi’s are in the directions of b̂i− b̂′i, and (ii) Bob’s

settings are such that n̂i’s are mutually orthogonal and |β1| = |β2| = |β3| ≈ 36.9o.
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3.5 Salient features of the LNR inequalities (3.6)

and (3.7)

First, let us focus on the LNR inequality (3.6). Given the way this inequality has

been derived by us, Alice and Bob are both free to arbitrarily choose their mea-

surement settings, and given their choices, the LNR bound (the right hand side)

on the combination of correlation functions (the left hand side) can be calculated

with help of the formula (3.8).

Note that the inequality derived and experimentally tested by Branciard et al.

[Branciard et al., 2008] is a special case of the inequality (3.6) by assuming a

specific geometrical constraint that requires n̂i’s to be mutually orthogonal and

|β1| = |β2| = |β3|. For a photon pair prepared in a pure singlet state, one can

show that settings for observing the maximum violation of the inequality (3.6)

are in which Bob’s choices are such that the three directions n̂i’s of (b̂i − b̂′i) are

orthogonal where |β1| = |β2| = |β3| ≈ 36.9o, with âi’s chosen by Alice to be along

the directions of b̂i + b̂′i (see Appendix B for a proof). While the magnitude of the

maximum possible violation of the inequality (3.6) corresponds to the threshold

visibility of 94.3%.

Now, considering the LNR inequality (3.7), we note that for a pure singlet state,

violations of (3.7) by the QM predictions can be shown, for example, by taking a

class of symmetric configurations in which the angles between Bob’s measurement

settings satisfy δ1 = δ2 = δ3 = δ and Alice’s measurement settings âi’s are along

the directions b̂i − b̂i⊕1 [see Fig.3.2(a)]. For such configurations, QM violations

of the inequality (3.7) occur within the domain δ ∈ [106.8o, 116.5o] where the

maximum violation is obtained for δ ≈ 112.63o [see Fig.3.2(b)]. In this case, the

maximum value of the ratio of the right hand bound and the corresponding QM

value of the left hand side is given by 0.9836, meaning that the threshold visibility

in the relevant experiment that is required to show the QM violation of the LNR

inequality (3.7) is 98.36%. Now, note that already the visibility above 98.4% was

achieved in an experiment by Paterek et al. [Paterek et al., 2007] where a LNR

inequality involving 7 measurement settings for Bob and 3 for Alice was tested.

A similar work [Branciard et al., 2007] was also reported using a family of LNR

inequalities involving 2N and 4N (N ≥ 2) number of settings for Alice and Bob

respectively.
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Figure 3.2: (a) As an illustrative example, a class of symmetric configurations
for observing QM violation of LNR inequality (3.7) for a pure singlet state
is shown. For Bob’s measurement settings b̂i’s, where i ∈ {1, 2, 3}, the angle
between any pair of settings is δ. Alice’s measurement settings âi’s are along the
directions b̂i− b̂i⊕1. (b) The dotted line shows LNR upper bounds and the bold
line shows corresponding QM values of the left hand side of the LNR inequality
(3.7) as δ is varied. A range of QM violations of the inequality (3.7) is obtained
for δ ∈ [106.8o, 116.5o], with the maximum violation occurring at δ ≈ 112.63o.

Thus, an additional significance of our LNR inequality (3.7) lies in involving lesser

number, only 3 measurement settings for Bob and 3 for Alice such that the thresh-

old visibility required to test this inequality is experimentally realizable. An open

problem nevertheless remains whether a testable incompatibility can be shown

between QM and the LNR model by using even lesser number of settings in either

wing without, of course, taking recourse to any additional assumption like that of

rotational invariance of correlation functions.
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3.6 Concluding remarks.

A generic property of the LNR inequalities is that while the left hand side of any

such inequality involves experimentally measurable quantities (correlation func-

tions), the LNR bound (the right hand side) of such an inequality, unlike any

Bell-type inequality, is not just a number fixed by the general assumptions used in

the relevant derivation; instead, it depends on the choice of the geometrical con-

figuration of measurement settings. Thus, for different configurations of settings,

say, S1, S2, S3... there are corresponding LNR bounds B1, B2, B3.... Therefore,

if due to experimental imprecision, the actual settings deviate from the required

configuration within a certain domain that can be estimated by the experimenter,

there will be a corresponding range of LNR bounds. As a consequence, the exper-

imental violation of any relevant LNR inequality can be unambiguously concluded

only if the supremum of such a range of LNR bounds is violated. However, an

estimation of such a range of LNR bounds by taking into account all possible

imprecisions that may occur in realizing the required configuration of settings is

severely restricted for any of the LNR inequalities derived earlier [Branciard et al.,

2008, 2007; Groblacher et al., 2007; Leggett, 2003; Paterek et al., 2007]. This is

essentially because the validity of any such inequality is in itself contingent upon

certain geometrical constraints being strictly satisfied by the measurement set-

tings. Herein lies the central significance of our LNR inequalities (3.6) and (3.7)

in enabling a more logically conclusive test of the LNR model vis-a-vis QM than

that has been hitherto possible—this is because the forms of the LNR inequalities

derived here are free from any constraint on the spatial alignments of the relevant

measurement settings.



Chapter 4

A testable prediction of the

no-signaling condition

The significance of no-signaling condition is fundamental in the study of quantum

correlations. In the present chapter predictive power of the no-signaling condition

(NSC) is demonstrated in a testable situation involving a non-ideal SternGerlach

(SG) device in one of the two wings of the EPR-Bohm entangled pairs. In this

wing, for two types of measurement in the other wing, we consider the spin state

of a selected set of particles that are confined to a particular half of the plane

while emerging from the SG magnetic field region. Due to non-idealness of the SG

setup, this spin state will have superposing components involving a relative phase

for which a testable quantitative constraint is obtained by invoking NSC, thereby

providing a means for precision testing of this fundamentally significant principle

[Home, Rai and Majumdar, 2013].

4.1 Introduction

A key condition underpinning the ‘peaceful coexistence’ [Shimony, 1984] between

quantum mechanics and special relativity is the no-signaling condition (NSC)

which prohibits the use of quantum nonlocality for sending information in a way

that can lead to causality paradoxes. While the compatibility of NSC with quan-

tum mechanics has been extensively analyzed with an increasing generality [Bohm,

1951; Brown and Timpson, 2006; Bussey, 1982; Clifton and Redhead, 1988; Datta

57
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et al., 1987, 1988; Finkelstein and Stapp, 1987; Ghirardi et al., 1980, 1988; Green-

berger, 1998; Hall, 1987; Jordan, 1983; Scherer and Busch, 1993; Squires, 1988], an

interesting line of study was initiated by Gisin showing the use of NSC as a tool

to either find the limits of quantum mechanics, like constraining any conceivable

nonlinear modification of the Schrödinger equation [Gisin, 1990; Gisin and Rigo,

1995], or to obtain specific bounds on quantum operations, like deriving bound on

the fidelity of quantum cloning machines [Ghosh et al., 1999; Gisin, 1998]. Sub-

sequently, NSC has been applied, for example, to obtain a tight bound on the

optimal unambiguous discrimination between two nonorthogonal states [Barnett

and Andersson, 2002]. A number of other studies [Feng et al., 2002; Home and

Pan, 2009; Hwang, 2005; Pati and Braunstein, 2003] too have highlighted the role

of NSC in limiting various quantum operations, while some features of the quan-

tum formalism have also been derived from NSC [Svetlichny, 1998]. Interestingly,

NSC has been invoked in the context of quantum cryptography as well; viz. to

formulate quantum key distribution protocols which are secure against attack by

any eavesdropper who is limited only by the impossibility of superluminal signal-

ing [Acin et al., 2006; Barrett, Hardy and Kent, 2005; Kent, 1999] - this line of

study is motivated by the notion [Barrett, Hardy and Kent, 2005]: “... quantum

theory could fail without violating standard relativistic causality, and vice versa”.

Complementing the above mentioned studies, in this chapter our goal is to derive

from NSC, a testable quantitative relation whose empirical scrutiny would enable

a dedicated precision testing of NSC in the same spirit as Born’s rule has recently

been tested to provide bounds on its accuracy [Sinha et al., 2010]. Such precision

testing using a quantitative relation is useful in having the potential of being able

to detect very small deviations that may be missed otherwise, and can provide an

empirical upper bound on possible violation of NSC. To the best of our knowledge,

a dedicated precision testing of NSC remains unexplored. To this end, the example

analyzed here provides a constraint relation concerning the spin state of a selected

set of spin-1/2 particles that are confined to a particular half of the plane while

emerging from a non-ideal Stern-Gerlach(SG) setup. Here the particles in the

other half of the plane are taken to be blocked/detected. The spin state, thus,

filtered out comprises of two superposing spin components with a relative phase,

the respective probability amplitudes being calculable from the solutions of the

Schrödinger equation for the non-ideal SG setup. In order to evaluate the relative

phase, a fully unitary treatment (albeit non-trivial) is required that would be based

on appropriately modeling the post-selection process used for filtering out the spin
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state. The central point made in our work is that irrespective of the specifics of

such a treatment, the value of the relative phase occurring in the post-selected

spin state has to satisfy a testable constraint that is derivable from NSC. To show

this, we proceed as follows.

4.2 Formulation of the example

For the EPR-Bohm (EPRB) entangled pairs of spin-1/2 particles in spin singlets,

the corresponding wave function is given by

|Ψ〉 = (1/
√

2)|ψ0〉1|ψ0〉2(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2) (4.1)

where the spatial parts |ψ0〉1 and |ψ0〉2 (assumed to be, say, represented by Gaus-

sian wave packets) pertain to the particles 1 and 2 respectively, and the spin part

represents the singlet state. Next, let a non-ideal SG setup be placed by Bob

in one of the two wings of the EPRB pairs, say, in the wing 2 for the particles

moving along the +y-axis (Fig(4.1)). After passing through an inhomogeneous

magnetic field in the SG setup oriented along, say, the +z-axis, the time-evolved

total wave function (Ψ(x, t)) of any particle, in general, would involve the spatial

wave functions ψ+(x, t) and ψ−(x, t) that are coupled with the spin-up (| ↑〉z) and

spin-down (| ↓〉z) states respectively, given by

Ψ(x, t) = ψ+(x, t)| ↑〉z + ψ−(x, t)| ↓〉z (4.2)

Here |ψ+(x, t)|2 (|ψ−(x, t)|2) determines the probability of finding particles with

the spin | ↑〉z(| ↓〉z) in the upper and lower halves of the y-z plane. In the ideal

case, 〈ψ+(x, t)|ψ−(x, t)〉 = 0 with the probability of finding particles corresponding

to the spin | ↑〉z(| ↓〉z) in the lower (upper) y-z plane being negligibly small. The

explicit forms of ψ+(x, t) and ψ−(x, t) in the general case of a non-ideal SG setup

are available in the relevant literature (see, for example, [Home and Pan, 2009; Pan

and Matzkin, 2012] and the references cited therein), where 〈ψ+(x, t)|ψ−(x, t)〉 6=
0. Note that idealness (non-idealness) of a SG setup depends on appropriately

choosing the strength of the magnetic field within the SG setup, commensurate

with the energy and width of the incoming wave packet.



Chapter 4. A testable prediction of the no-signaling condition 60

Now, suppose two types of measurements (the types denoted by A and B respec-

tively) are performed by, say, Alice in the wing 1 of the EPRB pairs of singlet

states given by Eq.(4.1). The type A corresponds to a set of measurements of,

say, the x-component of spin, while B corresponds to a set of measurements of the

spin component along the z-axis which is the same as the direction of the inho-

mogeneous magnetic field in the non-ideal SG setup in Bob’s wing. Therefore, in

the cases A and B respectively, effectively mixtures of +x and −x spin compo-

nents (with equal weighting)and that of +z and −z spin components (with equal

weighting) are produced in Bob’s wing. This can be seen from Eq. (4.1) by either

invoking the collapse postulate or by taking into account the feature that the mea-

suring apparatus states in Alice’s wing are mutually orthogonal, corresponding to

the distinct outcomes of the measurement of the spin. Thus, subsequently in Bob’s

wing, say, in the case A, for the purpose of our argument, we can consider the

spin states | →〉x and | ←〉x as pure state constituents of a mixed state. Similar

is what happens in the case B where the resulting mixed state comprises of | ↑〉z
and | ↓〉z states. The particles in Bob’s wing are then passed through a non-ideal

SG setup, followed by post-selection confined to upper half of the y-z plane. Such

post-selected particles are subjected to the measurement of an arbitrary compo-

nent of spin (say, σθ) using an ideal SG setup with its inhomogeneous magnetic

field oriented along a direction making an angle θ with the +z-axis in the x-z

plane.

Our treatment hereafter will be focused on the probability of obtaining a particular

outcome (say, +1) of the measurement of σθ on the post-selected particles in the

upper half of the y-z plane in Bob’s wing, calculating it in the two cases A and B

corresponding to different types of measurement performed in Alice’s wing. Such

an observable probability needs to be the same in both these cases in order to

ensure no-signaling between the two wings of the EPRB pairs. This requirement

leads to a constraint on the relative phase occurring in the spin state of the post-

selected particles on which the final spin measurement is considered.
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Figure 4.1: Spin-1/2 particles 1 and 2 are members of the EPR entangled
pairs emitted from a source S moving along y-axis in the opposite directions.
Particles 2 pass through [NSG]z, a nonideal Stern-Gerlach device with its in-
homogeneous magnetic field oriented along z-axis. After emerging from the
[NSG]z setup, particles confined to the lower half of the y-z plane are ab-
sorbed/detected, while particles in the upper half of the y-z plane are sub-
jected to the measurement of an arbitrary spin component, say, σθ by us-
ing an ideal Stern-Gerlach setup [SG]θ where the inhomogeneous magnetic
field is along a direction in the x-z plane making an angle θ with the z-axis.

4.3 Derivation of a testable consequence of the

no-signaling condition

We begin by noting that post-selecting particles emerging in the upper half of the

SG setup in question is ensured by absorbing/detecting particles in the lower half.

Thus, this can be viewed, in principle, as a kind of approximate measurement of

position of the particles lying within the lower half, for which the spatial states

of the lower half particles are coupled with the states of the absorber/detector.

Hence, this post-selection process decoheres the entanglement (Eq.(4.2)) between

the spatial and spin states of the particles, and results in a product wave function

of the spatial and spin parts for all the upper (lower) half particles that emerge

from the non-ideal SG setup with its inhomogeneous magnetic field oriented along

the z-axis. The spin state of any such particle will be found to be either | ↑〉z
or | ↓〉z, but since it is not known a priori which particle is to be found in which

of these states, the spin part of the state is to be regarded as a superposition of
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| ↑〉z and | ↓〉z spin states. The post-selection procedure that is considered may,

therefore, be viewed as a state preparation for further measurements.

In what follows, the cases A and B are analyzed separately.

Case A: In this case, as mentioned earlier, due to measurements in Alice’s wing,

effectively a mixed state comprising of | →〉x and | ←〉x spin components (with

equal weighting) results in Bob’s wing. Let us first focus on particles with the | →〉x
spin component in Bob’s wing. Given that such particles are passed through a

non-ideal SG setup involving an inhomogeneous magnetic field along the z-axis,

the spin component of any emerging particle post-selected in the upper half of the

y-z plane will be found to be either | ↑〉z or | ↓〉z with the respective probability

determined by the overlap of |ψ+(x, t)|2 or |ψ−(x, t)|2 in the spatial region of the

upper y-z plane, while, as mentioned earlier, one does not know a priori which

particle will be found in which spin state. Since our subsequent argument is

concerned solely with calculating the observational results pertaining to the spin

state of the post-selected particles, we can henceforth ignore the spatial state. The

normalized spin state of any particle belonging to a post-selected ensemble in the

upper half will be a superposition of | ↑〉z and | ↓〉z spin states with a relative phase

denoted by φ+x (the subscript +x is used for the | →〉x spins passed through the

non-ideal SG setup), given by

|χ〉 =
√

1− Es| ↑〉z + exp(iφ+x)
√
Es| ↓〉z (4.3)

where Es denotes the time-saturated value of the quantity E(t) given by

E(t) =

∫ +∞

x→−∞

∫ +∞

y→−∞

∫ +∞

z=0

|ψ−(x, t)|2dxdydz (4.4a)

=

∫ +∞

x→−∞

∫ +∞

y→−∞

∫ +0

z→−∞
|ψ+(x, t)|2dxdydz (4.4b)

A measure of the non-idealness of the SG setup is provided by the quantity E(t)

which determines the probability of finding | ↓〉z (| ↑〉z) particles in the upper

(lower) y-z plane at time t. The parameter E(t) varies with time as the wave

packets |ψ+(x, t)|2 and |ψ−(x, t)|2 freely propagate in opposite directions after

emerging from the SG setup. E(t) finally attains a time-independent saturated
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value denoted by Es, with the saturation time depending upon choices of the

relevant parameters (see, for example, Home et al. [Home and Pan, 2009]). For

an ideal SG setup, Es = 0.

Here it needs to be pointed out that , although in our argument we are considering,

in principle, the post-selection to be done on the whole upper half of the y-z plane,

in practice, it would suffice if a representative set of a suitably large number of

particles are post-selected that are confined to a finite region of the upper y-z

plane such that there is sufficient non-vanishing probability for finding either | ↑〉z
or | ↓〉z spin state in the half under consideration. Note that due to Gaussian

nature of the wave packets |ψ+|2 and |ψ−|2, the probability for finding particles

with either | ↑〉z or | ↓〉z spin state in the region corresponding to large z would be

negligibly small. Of course, if one is required to take into account the finiteness of

the region chosen for post-selection, the range of integration over the z-coordinate

in Eqs. (4.4a), (4.4b) will vary depending upon the actual region of the upper

y-z plane chosen for post-selection, thereby affecting the value of the parameter

Es in Eq. (4.3). But, it is important to stress that, whatever be the value of Es,

our subsequent argument goes through and the constraint relation concerning the

relative phase we now proceed to derive would remain unaffected.

Now, given an input spin state | →〉x = (1/
√

2)(| ↑〉z + | ↓〉z) passing through a

non-ideal SG setup, using Eq. (4.1), the probability for finding particles in the

upper half of the y-z plane with the spin component | ↑〉z or | ↓〉z is given by

(1/2)(1−Es) or (1/2)Es respectively. Then, the total probability of such particles

being post-selected in the upper half of the y-z plane is given by pupper = (1/2)(1−
Es) + (1/2)Es = 1/2. For these post-selected particles with the normalized spin

state |χ〉 given by Eq. (4.3), using the expressions for the spin states | ↑〉z and

| ↓〉z in terms of the eigenstates of σθ with eigenvalues +1 and -1 respectively, the

probability of obtaining a particular outcome, say +1, for the measurement of an

arbitrary spin component σθ is given by

p+
A = (1/2)

[
1 + (1− 2Es)cosθ + 2

√
Es(1− Es)sinθcosφ+x

]
(4.5)

Next, note that due to measurements of the x-component of spin in Alice’s wing,

particles with the | →〉x spin component are produced in Bob’s wing with the

probability (1/2). Hence, the total probability P+
A that such particles after passing

through a non-ideal SG setup get post-selected in the upper half of the y-z plane
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and yield the outcome +1 for the measurement of σθ is given by P+
A = (1/2)pupperp

+
A

where p+
A is given by Eq. (4.5) and pupper = 1/2 as explained earlier, whence

P+
A = (1/8)

[
1 + (1− 2Es)cosθ + 2

√
Es(1− Es)sinθcosφ+x

]
(4.6)

The other situation in the case A that occurs with the probability (1/2) corre-

sponds to particles with the | ←〉x spin component produced in Bob’s wing due

to measurements of the x-component of spin in Alice’s wing. The probability P−A

of such particles to be post-selected in the upper half of the y-z plane of the non-

ideal SG setup and yield the outcome +1 for the measurement of σθ is given by

(obtained in a way similar to the derivation of the expression (4.6) for the quantity

P+
A )

P−A = (1/8)
[
1 + (1− 2Es)cosθ + 2

√
Es(1− Es)sinθcosφ−x

]
(4.7)

where φ−x is the relative phase occurring in the spin state (of the form Eq. (4.3))

of such post-selected particles in the upper half of the y-z plane for the | ←〉x
spins passed through the SG setup. Therefore, in the case A, using Eqs. (4.6) and

(4.7), the total probability P x
A of obtaining the outcome +1 for the measurement

of σθ on particles that pass through the non-ideal SG setup and get selected in the

upper half of the y-z plane is given by

P x
A = P+

A + P−A = (1/4)
[
1 + (1− 2Es)cosθ +

√
Es(1− Es)

sinθ(cosφ+x + cosφ−x)] (4.8)

where the superscript x is used to denote that the quantity P x
A is measured in

Bob’s wing corresponding to the total set of measurements of the x-component of

spin in Alice’s wing.

Case B: In this case, we consider a set of measurements of the z-component of

spin in Alice’s wing which is along the same direction as that of the inhomogeneous

magnetic field in the non-ideal SG setup in Bob’s wing. This results in effectively

a mixed state made up of | ↑〉z and | ↓〉z spin components (with equal weighting)

in Bob’s wing. Let us first focus on the particles with the | ↑〉z spin component
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occurring in Bob’s wing. For a particle in the spin state | ↑〉z passing through a

non-ideal SG setup involving an inhomogeneous magnetic field along the z-axis,

the probability of such a particle being post-selected in the upper half of the y-z

plane is given by 1− Es where, as seen from Eq. (4.4b), the quantity Es denotes

the time-saturated probability of finding | ↑〉z particles in the lower half of the y-z

plane (Es 6= 0 due to non-idealness of the SG setup). The post-selected normalized

spin state in this case is | ↑〉z.

Then, for such post-selected particles, using the expression for the spin state | ↑〉z
in terms of the eigenstates of σθ with eigenvalues +1 and -1 respectively, the

probability of obtaining a particular outcome, say +1, of measuring σθ is given by

p+
B = (1/2)(1 + cosθ) (4.9)

Now, remembering that due to measurements of the z-component of spin in Alice’s

wing, particles with the | ↑〉z spin component are produced in Bob’s wing with

the probability (1/2), the probability P+
B that such particles passing through the

non-ideal SG setup get post-selected in the upper half of the y-z plane and yield

the outcome +1 for the measurement of σθ is given by P+
B = (1/2)(1 − Es)p

+
B

where p+
B is given by Eq. (4.9), whence

P+
B = (1/4)(1 + cosθ)(1− Es) (4.10)

Next, there is another set of particles having the | ↓〉z spin component in Bob’s

wing occurring with the probability 1/2 due to measurements of the z-component

of spin in Alice’s wing. The probability P−B of such particles getting post-selected

in the upper half of the y-z plane and yielding the outcome +1 for the measurement

of σθ is as follows (obtained in a way similar to the derivation of the expression

(4.10) for the quantity P+
B )

P−B = (1/4)(1− cosθ)Es (4.11)

where, as seen from Eq. (4.4a), the quantity Es denotes the time-saturated prob-

ability of finding | ↓〉z particles in the upper half of the y-z plane.
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Thus, in the case B, in Bob’s wing, the total probability P z
B of obtaining the

outcome +1 for the measurement of σθ on particles that pass through the non-

ideal SG setup and are selected in the upper half of the y-z plane is given by

P z
B = P+

B +P−B where P+
B and P−B are given by Eqs. (4.10) and (4.11) respectively,

whence

P z
B = (1/4) [1 + (1− 2Es)cosθ] (4.12)

where the superscript z is used to denote that the quantity P z
B is measured in

Bob’s wing corresponding to the total set of measurements of the z-component of

spin in Alice’s wing.

Now, in this example, the condition ruling out any possibility of signaling from

Alice to Bob that could have occurred by comparing the cases A and B is given by

P x
A = P z

B, with this equality holding good for the measurement of any arbitrary

spin component σθ on the particles in Bob’s wing that are post-selected following

a non-ideal SG setup. Using Eqs. (4.8) and (4.12), the no-signaling condition

P x
A = P z

B reduces to

(1/4)
[
1 + (1− 2Es)cosθ +

√
Es(1− Es)sinθ

(cosφ+x + cosφ−x)] = (1/4) [1 + (1− 2Es)cosθ] (4.13)

For θ = 0, i.e., if for the post-selected particles, the spin component is measured

along the z-axis (which is the direction of the inhomogeneous magnetic field in the

non-ideal SG setup), Eq. (4.13) is automatically satisfied. For any value of θ 6= 0, if

the equality given by Eq. (4.13) is to hold good, the condition cosφ+x+cosφ−x = 0

needs to be satisfied, which leads to the following relation

φ+x ± φ−x = π (4.14)

In the above derivation of Eq. (4.14), the case A pertains to measurements of

the x-component of spin in Alice’s wing,while in the case B, a key feature is

that measurements of the spin component in Alice’s wing are considered along a
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direction (viz. the z-axis) which is the same as that of the inhomogeneous magnetic

field in the non-ideal SG setup in Bob’s wing.

Let us now discuss what happens if in the case A, in Alice’s wing, an arbitrary

spin component σω is measured where the angle ω specifies a direction with respect

to the z-axis in the x-z plane (with the proviso ω 6= 0, π). Then, if one follows

the line of calculation similar to that in the earlier case A, the total probability

P ω
A = P+

A (ω) + P−A (ω) of obtaining the outcome +1 for the measurement of σθ on

particles in Bob’s wing that pass through a non-ideal SG setup and are selected

in the upper half of the y-z plane is given by

P ω
A = (1/4)

[
1 + (1− 2Es)cosθ +

√
Es(1− Es)

sinωsinθ(cosφ+ω + cosφ−ω)] (4.15)

where the superscript ω is used to denote that here the quantity P ω
A measured in

Bob’s wing corresponds to measurements of the spin component σω in Alice’s wing.

Note that Eq. (4.15) reduces to Eq. (4.8) if the measurement of the x-component

of spin is performed in Alice’s wing; i.e., when ω = π/2.

Using Eqs. (4.12) and (4.15), the no-signaling condition (NSC) P ω
A = P z

B, in this

general case, becomes the following equality

(1/4)
[
1 + (1− 2Es)cosθ +

√
Es(1− Es)sinωsinθ

(cosφ+ω + cosφ−ω)] = (1/4) [1 + (1− 2Es)cosθ] (4.16)

For any value of θ 6= 0, if Eq. (4.16) is to be valid, it is required that cosφ+ω +

cosφ−ω = 0 which, in turn, implies the following relation

φ+ω ± φ−ω = π (4.17)

As a consequence of NSC, Eq. (4.17), therefore, provides a relation constraining

the relative phase occurring in the spin state of the particles in Bob’s wing that

are post-selected following a non-ideal SG setup, confined to the upper half of the
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y-z plane. For Es = 0, i.e., when the SG setup used in Bob’s wing is ideal, it is

seen from Eq. (4.16) that the NSC condition is automatically satisfied. Thus, non-

idealness of the SG setup (Es 6= 0) used in our example is crucial for obtaining

the quantitative relation given by Eq. (4.17). The way such a relation can be

subjected to an experimental test will now be discussed as follows.

4.4 Empirical testability of the constraint rela-

tion Eq. (4.17)

We begin by noting that a possible test of NSC would seem to be by measuring the

statistics of the outcomes in one of the two wings of an EPRB setup while changing

the measurement setting in the other wing. However, such a test would require

to ensure strict space like separation between the two relevant measurements in

the two wings of the EPRB pairs - a condition which is non-trivial to satisfy

because of an ambiguity concerning the stage at which a measurement process

can be regarded as completed (i.e., precisely when a measurement outcome can

be considered to be registered); this would critically depend upon the details of

how a measurement process is modeled. On the other hand, an important point

to be stressed is that although the preceding treatment in our paper deriving Eq.

(4.14) or (4.17) from NSC is in the context of EPRB entangled pairs, once the

relation is obtained, its validity can be studied by focusing only on a single beam

of spin-1/2 particles (say, neutral atoms or neutrons) passed through a non-ideal

SG setup. Thus, in practice, such a test wouldn’t require EPRB pairs, thereby

circumventing the need to satisfy the delicate condition of space like separation.

We first consider a beam of spin-1/2 particles with their spins oriented along a

direction making an angle ω with the z-axis in the x-z plane (here ω 6= 0, π). Let

this beam having the spin state | ↗〉ω be passed through a non-ideal SG setup

in which the inhomogeneous magnetic field is along the z-axis. Subsequently,

attention is focused on the spin state of a set of particles confined to the upper half

of the y-z plane that are selected for further measurement by blocking/detecting

particles in the other half of the y-z plane. Such a spin state is of the form given

by Eq. (4.3) where the relative phase is φ+ω for the initial beam of spin-polarized

particles with the spin state | ↗〉ω. Similarly, if a beam of oppositely spin-polarized

particles with the spin state | ↙〉ω is passed through the non-ideal SG setup in
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question, the spin state of the post-selected particles given by Eq. (4.3) would

involve the relative phase φ−ω.

Now, note that the relative phase occurring in the spin state of the particles se-

lected in, say, the upper half of the y-z plane cannot be fixed unless the effect of

detecting particles in the other half is taken into account within a fully unitary

treatment. Whatever be the details of such a treatment, the upshot of our pre-

ceding analysis is that the sum of the phase factors φ+ω and φ−ω should turn out

to be π as constrained by Eq. (4.17) which is a consequence of the no-signaling

condition. Therefore, an empirical test of the constraint relation given by Eq.

(4.17) would provide a means for precision testing of NSC.

Next, to see explicitly how the experimental determination of φ+ω(φ−ω) required

for testing Eq. (4.17) can be realized with respect to the post-selected spin state

of the form given by Eq. (4.3), we write this state as follows

|ν〉 =
√

1− Es| ↑〉z + exp(iφ±ω)
√
Es| ↓〉z (4.18)

Given a representative set of post-selected particles corresponding to the above

state |ν〉, if one considers the measurement of the spin variable σz, it is evident

from Eq. (4.18) that the probability of obtaining the outcome ±1 will yield the

value of the parameter Es. Then, if one takes another representative set of such

particles and considers the measurement of any spin component, say σx, non-

commuting with σz, the probability of obtaining the outcome, say +1, evaluated

using Eq. (4.18) written in terms of the eigenstates of σx, will be given by (1/2) +√
Es(1− Es)cosφ±ω. This measured probability, therefore, enables to fix the phase

factor φ±ω, since the parameter Es is known from the measurement of σz. Thus,

in this way, by determining φ±ω, the NSC relation given by Eq. (4.17) can be

subjected to an experimental verification.

Note that the accuracy of the above experimental determination of φ±ω depends

on the accuracy to which the idealness of the SG setup is ensured in measuring

the relevant spin variables pertaining to the post-selected spin state, while the

parameters of the non-ideal SG setup used before post-selection need to be chosen

such that the quantity Es has an appreciable non-zero value. As mentioned above,

the measured probability from which cosφ±ω can be calculated involves the factor√
Es(1− Es) which will determine the overall precision to which NSC can be
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tested using the method formulated in this paper and an empirical upper bound

on possible violation of NSC can be provided.

We would also like to point out that in our example, the relevant parameters of

the SG setup and the region of the position space over which one introduces the

projection/post-selection determine the probability amplitudes in the superposi-

tion given in Eq. (4.3) (or, Eq. (4.18)) for the post-selected spin state, through

the parameter Es fixed by time-saturated values of Eqs. (4.4a) and (4.4b). A key

point of our treatment is that whatever be the value of the parameter Es, the

constraint relation Eq. (4.17) must hold good.

4.5 Summary and Conclusion

We would like to stress that our derivation of the relation (4.14) or (4.17) is based

on NSC and the standard rules of quantum mechanics that include, in particular,

taking the overall dynamics of the non-ideal Stern-Gerlach device to be linear and

the probabilities for measurement outcomes at any given time given by the stan-

dard Born rule. If the relation (4.14) or (4.17) is found to be empirically violated, it

would then seem to imply violation of NSC for the following reason. As mentioned

earlier in Section I by citing Ref. [Sinha et al., 2010], Born’s rule has recently been

verified by a rigorous precision test. On the other hand, the linearity condition of

quantum dynamics and NSC are interlinked [Gisin, 1990; Gisin and Rigo, 1995]

and, in particular, the thorough analysis by Simon et al.[Simon et al., 2001] brings

out the point that once NSC and the experimentally well-verified standard Born

rule are taken to be valid, quantum dynamics is rather rigidly constrained to be

linear. Thus, if the relation (4.14) or (4.17) turns out to be empirically invalid, it

would seem plausible to infer that the violation of NSC arises from a departure

from linearity in the way a non-ideal Stern-Gerlach setup acts in conjunction with

the type of post-selection process that is used in our example. The tenability of

such a possibility would then call for further investigation; for example, the gen-

eral framework for accommodating non-linearity in quantum dynamics discussed

by Weinberg [Weinberg, 1989] may be invoked in the context of our setup in order

to explain any observed violation of the relation (4.14) or (4.17). Here we note

that in Weinberg’s paper, an indication [Weinberg, 1989] has been given of ap-

plying his general framework by analyzing an ideal Stern-Gerlach setup, while in

our example, a non-ideal Stern-Gerlach device is considered, along with a suitable
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post-selection of particles emerging in one of the two halves.

As regards the distinctiveness of the setup used in our example, we may stress that

the post-selection procedure used here following a non-ideal SG setup is different

from the scheme of weak-measurement related studies [Aharonov et al., 1988]

where the post-selection follows an ideal SG setup that is preceded by a non-ideal

SG with a very weak magnetic field. In our example, the central feature is that for

an incoming beam of spin-1/2 particles that are spin-polarized along any direction

(other than the z-axis, the direction of the magnetic field in the non-ideal SG setup

considered here), the post-selected spin state of the emerging particles in any one

of the two halves is a superposition of | ↑〉z and | ↓〉z states with a relative phase

for which a constraint relation is obtained.

It has already been mentioned that a complete unitary treatment is required for

evaluating the above mentioned relative phase, for which one would need to suit-

ably incorporate the effect on the post-selected spin state in one of the halves,

arising from the blocking/detecting of particles in the other half that emerge from

the non-ideal SG setup. The extent to which the details of the modeling of such a

post-selection process can affect the evaluation of the relative phase occurring in

the post-selected spin state should be instructive to probe. Importantly, this type

of study needs to be compatible with the constraint relation given by Eq. (4.14)

or (4.17) whose validity should be independent of the specifics of the modeling

of the post-selection procedure used in our example. Here it may be noted that,

given the theory of approximate or generalized measurement [Busch et al., 1997,

1996] that has been developed to a considerable extent, its possible implication

pertaining to the type of post-selection considered here could be worth investigat-

ing. Finally, it is hoped that the predictive power of NSC in a testable situation

as illustrated by the example treated here using a non-ideal measurement setup

may motivate the formulation of other such examples that could be helpful for a

deeper understanding of the role of NSC in the context of non-ideal measurement

situations.



Chapter 5

Information causality and

Hardy’s correlation

In this chapter we study bi-partite Hardy’s correlations in two two-level systems

in the generalized no-signaling framework. We apply the principle of non-violation

of information causality (a generalization of no-signaling condition) to study the

Hardy-type nonlocal correlations. First we introduce this principle to explain

a quantum feature: why Hardy’s nonlocality cannot be observed for maximally

entangled states [Gazi, Rai, Kunkri and Rahaman, 2010]? Next, we derive bound

on Hardy’s non-locality and Cabello’s nonlocality by applying a sufficient condition

for violating information causality [Ahanj, Kunkri, Rai, Rahaman and Joag, 2010].

5.1 Introduction

Violation of the Bell-type inequalities [Bell, 1964; Clauser et al., 1969] by quantum

mechanics show that nature is nonlocal. Nevertheless quantum correlations respect

causality principle [Ghirardi et al., 1980]. However, there are also other non-

signaling post quantum correlations [Popescu and Rohrlich, 1994] which cannot

be distinguished from quantum correlation by subjecting them to the causality

principle. Though post quantum correlations are not observed in experiments,

but still we do not understand what underlying physical principle(s) completely

distinguishes quantum correlations from nonphysical post quantum correlations.

72
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Recent studies has shown that quantum features like violation of Bell type inequali-

ties [Popescu and Rohrlich, 1994], intrinsic randomness, no-cloning [Barnum et al.,

2007; Masanes et al., 2006], information-disturbance trade off [Scarani et al., 2006],

secure cryptography [Acin et al., 2006; Barrett, Hardy and Kent, 2005; Masanes,

2009], teleportation [Barnum et al., 2008], entanglement swapping [Skrzypczyk

et al., 2009] are also enjoyed by other post quantum no-signaling theories. On

the other hand for no-signaling correlations some implausible features has also

been noticed like: some no-signaling correlations would make certain distributed

computational tasks trivial [Brassard et al., 2006; Brunner and Skrzypczyk, 2009;

Linden et al., 2007; van Dam, 2000] and would have very limited dynamics [Bar-

rett, 2007]. So the study of the nonlocal correlations in the general no-signaling

framework leads us towards a deeper understanding of quantum correlations.

The principle of non-violation of information causality (IC) [Pawlowski et al., 2009]

has been identified as one of the foundational principle of nature, it is compatible

with experimentally observed quantum and classical correlations but rules out an

unobserved class of nonlocal correlation as nonphysical. The principle states that

communication of m classical bits causes information gain of at most m bits, this

is a generalization of the no-signaling principle, the case m = 0 corresponds to

no-signaling. Applying IC principle to non-local correlations, we get the Cirel’son

bound [Cirel’son, 1980] and all correlations that goes beyond Cirel’son’s bound

violate the principle of information causality [Pawlowski et al., 2009]. In [Allcock

et al., 2009] it was shown that though some part of quantum boundary can be

derived from a necessary condition (given in [Pawlowski et al., 2009]) for violating

IC, this condition is not sufficient for distinguishing quantum correlations from all

post-quantum correlations which are below the Cirel’son’s bound. So it remains

interesting to see if the full power of IC (some other conditions derived from IC)

can eliminate remaining post-quantum correlations below the Cirel’son’s bound.

Along with the research in the direction of completely distinguishing the quantum

correlations from rest of the nonlocal correlations, it would also be interesting

to apply the known IC condition(s) for qualitative/quantitative study of certain

specific features of nonlocal correlations. In this chapter we apply IC condition

to study two aspects of bipartite hardy’s correlation: (i) the feature of local ran-

domness in Hardy’s correlation, and (ii) bound on success probability of Hardy’s

correlations constrained by the information causality principle.

First, we apply IC condition in order to study the property of local randomness
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for a bipartite probability distribution which exhibits Hardy’s non-locality [Hardy,

1992, 1993]. Our motivation for this study came from the fact that Hardy’s non-

locality argument in quantum mechanics does not work for maximally entangled

state [Cabello, 2000; Hardy, 1993] and at the same time for a maximally entangled

state, local density matrix being completely random, both the results for a qubit

are equally probable. Keeping this in mind, we asked a more general question like:

for two two-level systems, how many observable and in which way, out of four

entering in the Hardy’s non-locality argument, can be locally random. We want

to study this question in the context of probability distribution which respects

an IC condition as well as in the context of quantum mechanics. We see that

the applied IC condition itself imposes powerful restriction but still it does not

reproduce all the restrictions imposed by quantum mechanics. In this context, it is

to be mentioned that no signaling condition does not impose any such restriction.

Interestingly we observed that the applied necessary condition for respecting IC

allows at most two observable, one on each side, chosen in a restricted way to

be completely random, and quantum mechanics allows only one of them to be

completely random.

Finally, we apply the IC principle to derive an upper bound on maximum success

probability of bipartite Hardy’s argument. Then we extend our result to Cabello’s

nonlocality argument (a generalization of Hardy’s argument).

5.2 Bipartite no-signaling correlations

Let us consider a bipartite black box shared between two parties: Alice and Bob.

Alice and Bob input variables x and y at their end of the box, respectively, and

receive outputs a and b. For a fixed input variables there can be different out-

comes with certain probabilities. The behavior of a these correlation boxes is fully

described by a set of joint probabilities P (ab|xy). In this article, we will focus on

the case of binary inputs and outputs (a, b, x, y ∈ {0, 1}). Then we have a set of

16 joint probabilities defining a bipartite binary input - binary output correlation

box. These types of correlations can be represented by a 4× 4 correlation matrix:
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
P (00|00) P (01|00) P (10|00) P (11|00)

P (00|01) P (01|01) P (10|01) P (11|01)

P (00|10) P (01|10) P (10|10) P (11|10)

P (00|11) P (01|11) P (10|11) P (11|11)



We note that since P (ab|xy) are probabilities, they satisfy positivity, P (ab|xy) ≥
0 ∀ a, b, x, y, and normalization

∑
a,b P (ab|xy) = 1 ∀ x, y. Since we are to study

no-signaling boxes; i.e., we require that Alice cannot signal to Bob by her choice x

and vice versa, the marginal probabilities Pa|x and Pb|y must be independent of y

and x, respectively. The full set of nonsignaling boxes forms an eight-dimensional

polytope [Barrett, Linden, Massar, Pironio, Popescu and Roberts, 2005] which has

24 vertices: eight extremal nonlocal boxes and 16 local deterministic boxes. The

extremal nonlocal correlations have the form

Pαβγ
NL =

{
1
2

if a⊕ b = XY ⊕ αX ⊕ βY ⊕ γ,
0 otherwise,

(5.1)

where α, β, γ ∈ {0, 1} and ⊕ denotes addition modulo 2.. Similarly, the local

deterministic boxes are described by

Pαβγδ
L =


1 if a = αX ⊕ β,

b = γY ⊕ δ;
0 otherwise,

(5.2)

where α, β, γ, δ ∈ {0, 1} and ⊕ denotes addition modulo 2.

Thus we can see that any bipartite two input- two output nonsignaling correla-

tion box can be expressed as a convex combination of the above 24 local/nonlocal

vertices.

5.3 Hardy’s correlations under no-signaling con-

dition

A bipartite two input - two output Hardy’s correlation puts simple restrictions on

a certain choice of 4 out of 16 joint probabilities in the correlation matrix. One

such choice is P (11|11) > 0, P (11|01) = 0, P (11|10) = 0, P (00|00) = 0 and it is
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easy to argue that these correlations are nonlocal. To show this, let us suppose

that these correlations are local i.e. they can be simulated by noncommunicating

observers with only shared randomness as a resource. Now consider the subset

of those random variables λ shared between the two observers such that for λs

belonging to this subset input x = 1, y = 1 give output a = 1, b = 1 (this subset

is nonempty since P (11|11) > 0), now conditions P (11|01) = 0 and P (11|10) = 0

tell that within this subset input x = 0, y = 0 would give output a = 0, b = 0, this

would imply that P (00|00) > 0), but it contradicts the condition P (00|00) = 0.

Hence these correlations are nonlocal. If we further restrict these correlations by

no-signaling condition we get Hardy’s nonsignaling boxes. It is easy to check that

these boxes can be written as a convex combination of 5 of the sixteen local vertices

P 0001
L , P 0011

L , P 0100
L , P 1100

L , P 1111
L and 1 of the eight nonlocal vertex P 001

NL . Then,

PHab|XY = c1P
0001
L + c2P

0011
L + c3P

0100
L

+c4P
1100
L + c5P

1111
L + c6P

001
NL (5.3)

where
∑6

j=1 ci = 1. From here the correlation matrix for these Hardy’s nonsignal-

ing boxes can be written as


0 c1 + c2 + c6

2
c3 + c4 + c6

2
c5

c2 c1 + c6
2

c3 + c4 + c5 + c6
2

0

c4 c1 + c2 + c5 + c6
2

c3 + c6
2

0

c2 + c4 + c5 + c6
2

c1 c3
c6
2



5.4 Property of local randomness in Hardy’s cor-

relations

For a most general bipartite correlation an input x on Alice’s side is locally random

if the marginal probabilities of all possible outcomes on Alice’s side for this input,

are equal and similarly for Bob. In the case of two-input-two-output bipartite

correlations: an input x on Alice’s side is locally random if, P (0|x) = P (1|x) = 1
2
,

in terms of joint probabilities this would mean that for any choice of Bob’s input

y, P (00|xy)+P (01|xy) = P (10|xy)+P (11|xy) = 1
2
. Similarly an input y on Bob’s

side is locally random if, P (0|y) = P (1|y) = 1
2
, in terms of joint probabilities this

can be expressed as, for any choice of Alice’s input x, P (00|xy) + P (10|xy) =
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P (01|xy)+P (11|xy) = 1
2
. Let us denote the 0 and 1 inputs on Alice’s (Bob’s) side

as 0A(0B) and 1A(1B) respectively. We would now like to see that, what choices

of inputs from the set {0A, 1A, 0B, 1B} can be locally random for a given class of

Hardy’s correlations.

Table 5.1: For the no-signaling bipartite Hardy’s correlation with two di-
chotomic observable on either side, here each row give the conditions which
coefficients cis must satisfy for the corresponding input to be locally random.

Input Conditions for local randomness

0A c1 + c2 + c6
2

= 1
2
;

c3 + c4 + c5 + c6
2

= 1
2

1A c1 + c2 + c4 + c5 + c6
2

= 1
2
;

c3 + c6
2

= 1
2

0B c3 + c4 + c6
2

= 1
2
;

c1 + c2 + c5 + c6
2

= 1
2

1B c2 + c3 + c2 + c4 + c5 + c6
2

= 1
2
;

c1 + c6
2

= 1
2

5.4.1 Hardy’s correlations respecting no-signaling

In the case of Hardy’s correlations which respects no-signaling, condition of local

randomness for each of the possible inputs, are given in the TABLE(5.1). Now

let us see that for the Hardy’s correlations respecting no-signaling, what choices

of inputs can be locally random. We give the results for every case, in the TA-

BLE(5.2). We can read from here that although in order to show the property of

local randomness Hardy’s correlations becomes much restricted, yet we get solu-

tions for each case. If we get solutions for the case 1, it is obvious that there are

solutions in all the remaining cases 2-15 , nevertheless we write the complete table

giving the form of solutions in each case for the later reference.
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Table 5.2: For the no-signaling bipartite Hardy’s correlation with two
dichotomic observable on either side, here each row gives the form of
solutions for the corresponding choice of inputs to be locally random.

Cases Locally random inputs C1 C2 C3 C4 C5 C6

1. {0A, 1A, 0B, 1B} 1
2
(1− c6) 0 1

2
(1− c6) 0 0 c6

2. {0A, 1A, 0B} c1
1
2
(1− c6)− c1

1
2
(1− c6) 0 0 c6

3. {0A, 1A, 1B} 1
2
(1− c6) 0 1

2
(1− c6) 0 0 c6

4. {0A, 0B, 1B} 1
2
(1− c6) 0 c3

1
2
(1− c6)− c3 0 c6

5. {1A, 0B, 1B} 1
2
(1− c6) 0 1

2
(1− c6) 0 0 c6

6. {0A, 1A} c1
1
2
(1− c6)− c1

1
2
(1− c6) 0 0 c6

7. {0B, 1B} 1
2
(1− c6) 0 c3

1
2
(1− c6)− c3 0 c6

8. {1A, 1B} 1
2
(1− c6) 0 1

2
(1− c6) 0 0 c6

9. {0A, 0B} c1
1
2
(1− c6)− c1 c3

1
2
(1− c6)− c3 0 c6

10. {0A, 1B} 1
2
(1− c6) 0 c3 c4

1
2
(1− c6)− c3 − c4 c6

11. {1A, 0B} c1 c2
1
2
(1− c6) 0 1

2
(1− c6)− c1 − c2 c6

12. {0A} c1
1
2
(1− c6)− c1 c3 c4

1
2
(1− c6)− c3 − c4 c6

13. {1A} c1
1
2
(1− c6)− c1 − c4 − c5

1
2
(1− c6) c4 c5 c6

14. {0B} c1
1
2
(1− c6)− c1 − c5 c3

1
2
(1− c6)− c3 c5 c6

15. {1B} 1
2
(1− c6) 1

2
(1− c6)− c3 − c4 − c5 c3 c4 c5 c6

5.4.2 Hardy’s correlation respecting information causality

Let us first briefly recapitulate the principle of information causality (IC) [Pawlowski

et al., 2009], then we would apply it in our study of the property of local ran-

domness for two-input-two-output Hardy’s no-signaling correlations. IC principle

states that for two parties Alice and Bob, who are separated in space, the infor-

mation gain that Bob can reach about a previously unknown to him data set of

Alice, by using all his local resources and m classical bit communicated by Alice,

is at most m bits. This principle can be well formulated in terms of a generic

information processing task in which Alice is provided with a N random bits

~a = (a1, a2, ....., aN) while Bob receives a random variable b ∈ {1, 2, , ..., N}. Alice

then sends m classical bits to Bob, who must output a single bit β with the aim

of guessing the value of Alice’s b-th bit ab. Their degree of success at this task is
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measured by

I ≡
N∑
K=1

I(aK : β|b = K),

where I(aK : β|b = K) is Shannon mutual information between aK and β. Then

the principle of information causality says that physically allowed theories must

have I ≤ m. The result that both classical and quantum correlations satisfy this

condition was proved in [Pawlowski et al., 2009]. It was further shown there that,

if Alice and Bob share arbitrary two input-two output no-signaling correlations

corresponding to conditional probabilities P (ab|xy), then by applying a protocol

by van Dam [van Dam, 2000], one can derive a necessary condition for respecting

the IC principle. This necessary condition reads,

E2
1 + E2

2 ≤ 1, (5.4)

where Ej = 2Pj − 1 (j = 1, 2), and P1, P2 are defined by,

P1 =
1

2

[
p(a=b|00) + p(a=b|10)

]
=

1

2

[
p00|00 + p11|00 + p00|10 + p11|10

]
P2 =

1

2

[
p(a=b|01) + p(a6=b|11)

]
=

1

2

[
p00|01 + p11|01 + p01|11 + p10|11

]
(5.5)

Here it is important to note that the condition (5.4) is only a necessary condition

(based on the protocol give in [Pawlowski et al., 2009]) for respecting the IC

principle. So a violation of (5.4)implies a violation of IC but the converse may

not be true. In fact, it is shown in [Allcock et al., 2009] that there are examples

where the condition (5.4) is satisfied but not the IC. We now derive some one way

implications about the property of local randomness for two input - two output

Hardy’s nonsignaling correlations. It is easy to verify that restricting Hardy’s

nonsignaling correlations by condition (5.4) and interchanging the roles of Alice

and Bob we get,

c2
6 + 2(c4 + c5)c6 + 2(c4 + c5)(c4 + c5 − 1) ≤ 0 (5.6)

c2
6 + 2(c2 + c5)c6 + 2(c2 + c5)(c2 + c5 − 1) ≤ 0 (5.7)
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By applying these conditions for all possible choices of inputs that can be locally

random for Hardy’s nonsignaling correlations (TABLE(5.2)), we get that at least

one of the above two conditions are violated for the cases 1− 8 but for the cases

9 − 15 we can find cis satisfying the above two conditions. Thus for the cases

1− 8 we can conclude that IC is violated, hence they cannot be true in quantum

mechanics also. Now we shall study the cases 9-15 in the context of quantum

mechanics in the following subsection.

5.4.3 Hardy’s correlation in quantum mechanics

Violation of IC for cases 1-8 implies that there are no quantum solution for these

cases. To resolve the remaining cases (9-15), we consider a two qubit pure quantum

state. It is to be mentioned that for two qubits, Hardy’s argument runs only for

pure entangled state [Kar, 1997]. So without loss of any generality, we consider

the following two qubit state,

|Ψ〉 = cos β|0〉A|0〉B + exp(iγ) sin β|1〉A|1〉B (5.8)

. Then the density matrix ρAB = |Ψ〉〈Ψ| can be written in terms of Pauli matrices

as,

ρAB =
1

4
[IA ⊗ IB + (cos2β − sin2 β)IA ⊗ σBz + (cos2β − sin2 β)σAz ⊗ IB

+(2 cos β sin β)σAx ⊗ σBx + (2 cos β sin β)σAx ⊗ σBy + (2 cos β sin β)σAy ⊗ σBx
−(2 cos β sin β)σAy ⊗ σBy + σAz ⊗ σBz ] (5.9)

The reduced density matrices ρA and ρB are,

ρA =
1

2
[I + (cos2β − sin2 β)σAz ] (5.10)

ρB =
1

2
[I + (cos2β − sin2 β)σBz ] (5.11)
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In general an observable on a single qubit can be written as n̂ · σ where, n̂ =

(sin θ cosφ, sin θ sinφ, cos θ) is any unit vector in R3 and σ = (σx, σy, σz). Then

the projectors on the eigen states of these observable are,

P± =
1

2
[I ± n̂ · σ] (5.12)

For observable on Alice’s side to be locally random,

Tr(ρAP
+) = Tr(ρAP

−) (5.13)

similarly for observable on Bob’s side to be locally random,

Tr(ρBP
+) = Tr(ρBP

−) (5.14)

On simplifying this we find that, for a non-maximally entangled state an observable

is locally random if and only if θ = π
2

i.e. n̂ is of the form (cosφ, sinφ, 0). Here

we would also like to mention that for a maximally entangled state any arbitrary

observable shows the property of local randomness, but we know that Hardy’s

argument do not run for a maximally entangled state. This also follows from the

IC principle, as for a maximally entangled state any four arbitrary observable (two

on Alice’s side and two on Bob’s side) are locally random and we saw that if so,

it violates the IC principle.

Now suppose A (0A) and A′ (1A) are the observable on Alice’s side and B (0B) and

B′ (1B′) are the observable on bob’s side. Here outputs 0 and 1 will corresponds

to outcomes +1 and −1 respectively. Then the Hardy’s correlation can be written

as,

P (A = +1, B = +1) = cos2 β cos2 θA
2

cos2 θB
2

+ sin2 β sin2 θA
2

sin2 θB
2

+2 cos β sin β sin
θA
2

sin
θB
2

cos
θA
2
cos

θB
2

cos(φA + φB − γ) = 0 (5.15)
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P (A = −1, B′ = −1) = cos2 β sin2 θA
2

sin2 θB′

2
+ sin2 βcos2 θA

2
cos2 θB′

2

+2 cos β sin β sin
θA
2

sin
θB′

2
cos

θA
2

cos
θB′

2
cos(φA + φB′ − γ) = 0 (5.16)

P (A′ = −1, B = −1) = cos2 β sin2 θA′

2
sin2 θB

2
+ sin2 β cos2 θA′

2
cos2 θB

2

+2 cos β sin β sin
θA′

2
sin

θB
2

cos
θA′

2
cos

θB
2

cos(φA′ + φB − γ) = 0 (5.17)

P (A′ = −1, B′ = −1) = cos2 β sin2 θA′

2
sin2 θB′

2
+ sin2 β cos2 θA′

2
cos2 θB′

2

+2 cos β sin βsin
θA′

2
sin

θB′

2
cos

θA′

2
cos

θB′

2
cos(φA′ + φB′ − γ) 6= 0 (5.18)

For these Hardy’s correlation if observableA andB (0A and 0B) are locally random,

then θA = θB = π
2
, then from equation (15) we get,

1 + sin 2β cos(φA + φB − γ) = 0 (5.19)

then this equation is satisfied only if sin 2β takes the value +1 or −1, in either case

corresponding state has to be a maximally entangled state, but this cannot be a

case. Therefore we conclude that observable A and B cannot be locally random in

quantum mechanics. Similarly we can see that local randomness of two observable

in the cases, A′ and B (1A and 0B) and A and B′ (0A and 1B) is also not possible.

Now we consider the case of just one observable - sayA(0A) from the set {A,A′, B,B′}
to be locally random ( and similarly for the cases A′, B,B′). Then we find that

there are non-maximally entangled states and choices of observable A,A′, B,B′

such that one of the observable is locally random. We give an example, consider

the state β = π
6
, and γ = π, choose observable A as θA = π

2
and φA = π, A′



Chapter 5. Information causality and Hardy’s correlation 83

as θA′ = 2 tan−1(tan2 π
6
) and φA′ = −π, B as θB = 2π

3
and φB = π, and B′ as

θB′ = π
3

and φB′ = −π, then it can be easily checked that for this choice of state

and observable, Hardy’s argument runs and the observable A is locally random.

Thus by analyzing the remaining cases (9−15) within quantum mechanics, we can

now conclude that for a quantum mechanical state showing Hardy’s nonlocality,

at most one out of the four observable can be locally random.

5.5 Bound on Hardy/ Cabello correlations

5.5.1 Hardy’s/Cabello-type argument for two qubits

Let us reconsider Hardy’s argument and its generalization. Consider two spin-1/2

particles 1 and 2 with spin observable A, A′ on particle 1 and B, B′ on particle

2. These observable gives the eigenvalues ±1. Now consider the following joint

probabilities:

P (A = +1, B = +1) = q1 (5.20)

P (A′ = −1, B = −1) = 0 (5.21)

P (A = −1, B′ = −1) = 0 (5.22)

P (A′ = −1, B′ = −1) = q4 (5.23)

Here equation (1) tells that, if A is measured on particle 1 and B is measured on

particle 2, then the probability that both get value +1 is q1, remaining equations

can also be interpreted in a similar fashion. These equations form the basis of Ca-

bello’s nonlocality argument. It can easily be seen that these equations contradict

local-realism if q1 < q4. To show this, let us consider those hidden variable states

λ for which A′ = −1 and B′ = −1. For these states, equations (2) and (3) tell

that the values of A and B must be equal to +1. Thus according to local realism

P (A = +1, B = +1) should be at least equal to q4. This contradicts equation (1)

as q1 < q4. It should be noted here that q1 = 0 reduces this argument to that of

Hardy’s. So by Cabello’s argument, we specifically mean that the above argument

runs, even with nonzero q1.
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5.5.2 Hardy and Cabello-type correlations from no-signaling

polytope

Previously, we discussed that, given a set of observables X, Y ∈ {0 1} and out-

comes a, b ∈ {0 1} joint probabilities pab|XY form an entire correlation table with

24 entries, which can be regarded as a point of 24- dimensional vector space.

Then, the positivity, normalization and non-signaling constraints lead the entire

correlation table to a convex subset in the form of a polytope which is known

as no-signaling polytope P , which is eight dimensional [Barrett, Linden, Massar,

Pironio, Popescu and Roberts, 2005]. There are 24 vertices of the polytope P ,

16 of which represent local correlations ( called “local vertices”) and 8 represent

nonlocal correlations. The local vertices can then be expressed as

pαβγδab|XY =


1, if a = αX ⊕ β,

b = γY ⊕ δ;
0, otherwise

(5.24)

where α, β, γ, δ ∈ {0, 1} and ⊕ denotes addition modulo 2.

The eight nonlocal vertices have the form:

pαβγab|XY =

{
1
2
, if a⊕ b = XY ⊕ αX ⊕ βY ⊕ γ,

0, otherwise
(5.25)

where α, β, γ ∈ {0, 1}.
Let us now we the correspondence (X = 0) ↔ A, (X = 1) ↔ A′, (Y = 0) ↔
B, (Y = 1) ↔ B′ and a, b = 0(1) ↔ +1(−1). Then it is straight-forward to see

that five of the 16 local vertices and one of the 8 nonlocal vertices satisfy Hardy’s

equations (1)-(4) (when q1 = 0), namely those given by p0001
ab|XY , p0011

ab|XY , p0100
ab|XY ,

p1100
ab|XY , p1111

ab|XY and p001
ab|XY . The other vertices can be covered by another set of

Hardy’s equations. Then the joint probabilities satisfying Hardy’s conditions can

be written as a convex combination of the above 6 vertices (five local vertices and

one nonlocal vertex). Then

pHab|XY = c1p
0001
ab|XY + c2p

0011
ab|XY + c3p

0100
ab|XY

+c4p
1100
ab|XY + c5p

1111
ab|XY + c6p

001
ab|XY (5.26)
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where
∑6

j=1 ci = 1.

Now if we consider q1 6= 0 (but q1 < q4), then the equations (1)− (4) is known as

Cabello’s nonlocality conditions, which can be written as a convex combination

of the above 6 vertices which satisfies Hardy’s conditions along with another four

local vertices p0000
ab|XY , p0010

ab|XY , p1000
ab|XY , p1010

ab|XY and one nonlocal vertex p110
ab|XY . So we

get,

pCab|XY = pHab|XY + c7p
0000
ab|XY + c8p

0010
ab|XY + c9p

1000
ab|XY

+c10p
1010
ab|XY + c11p

110
ab|XY (5.27)

where the expression pHab|XY is given in equation (5.26) and coefficients ci’s satisfy

the condition
∑11

j=1 ci = 1.

One can check from equation (5.26) that the success probability for Hardy’s ar-

gument is given by pH11|11 = 1
2
c6. From here, one can obviously see that under the

no-signaling constraint, the maximum success probability of Hardy’s argument i.e.

(pH11|11)max = 1
2

is achieved for c6 = 1 and c1 = c2 = c3 = c4 = c5 = 0. Similarly the

success probability for Cabello’s argument follows from equation (5.27) and can be

written as, pC11|11−pC00|00 = (1
2
c6 +c10)−C, where C = c7 +c8 +c9 +c10 + 1

2
c11, and,

here too we obtain that (pC11|11 − pC00|00)max = 1
2

for c6 = 1 and rest of the ci’s= 0.

This maximum success probability of Hardy’s/Cabello’s argument, restricted by

the no-signaling condition, has also been derived in [Cereceda, 2000; Choudhary

et al., 2010]. One should note that the probability set for which this maximum is

achieved coincides with PR correlation for both the cases. In the following sections

we will derive an upper bound on the maximum value of these success probabilities

from the principle of non-violation of information causality.

5.5.3 Hardy’s nonlocality and Information Causality

In this section we derive an upper bound on the maximum probability of success

of Hardy’s non-locality argument for a two qubit system in the context of non-

violation of information causality. Let Alice and Bob share no-signaling nonlocal

correlation satisfying Hardy’s condition i.e. the joint probability PHab|XY given in
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equation (5.26). Then for this nonlocal correlation we have

P1 =
1

2
(c5 + c4),

P2 =
1

2
(c1 + c2 + c3) (5.28)

To satisfy the IC condition equation (5.28) has to satisfy the condition

E2
1 + E2

2 ≤ 1

i.e

(c5 + c4 − 1)2 + (c1 + c2 + c3 − 1)2 ≤ 1,

which implies

c2
6 + 2(c4 + c5)c6 + 2(c4 + c5)(c4 + c5 − 1) ≤ 0 (5.29)

The above equation gives the maximum value of c6 =
√

2 − 1. Then an upper

bound on the maximum probability of success of Hardy’s non-locality is given by

PH11|11 = 1
2
c6 ≤ 1

2
(
√

2− 1) = 0.20717.

5.5.4 Cabello’s nonlocality and Information Causality

Now we try to find an upper bound on the maximum probability of success in

Cabello’s case in the context of non-violation of information causality. Let Alice

and Bob share non-signaling nonlocal correlation satisfying Cabello’s condition i.e

joint probability pCab|XY given in equation (5.27). Then for this nonlocal correlation

we have:

P1 =
1

2
[C + c5 +

c11

2
+ c4 + c7 + c8]

P2 =
1

2
[1 + c9 − (c4 + c5 + c6 + c10)] (5.30)

where C = c7 + c8 + c9 + c10 + 1
2
c11. Then

E1 = c7 + c8 − c1 − c2 − c3 − c6

E2 = c9 − c4 − c5 − c6 − c10 (5.31)
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To satisfy the IC condition equation (5.31) has to satisfy the condition

E2
1 + E2

2 ≤ 1.

One can easily check that

E1 + E2 = −(1 + 2x)

where x = (c10 + 1
2
c6)− C. It follows that

E2
1 + E2

2 = 4x2 + 4(1 + E2)x+ 2(1 + E2)E2 + 1,

so in order to satisfy the IC condition,

x2 + (1 + E2)x+
1

2
E2(1 + E2) ≤ 0

writing E2 in terms of P2 we obtain,

x2 + 2P2x+ P2(2P2 − 1) ≤ 0.

Since we are to find xmax it is sufficient to consider only the equality. Then,

x = −P2 +
√
P2(1− P2);

0 ≤ P2 ≤
1

2
.

The maximum value of x we obtained from here is,

xmax =
1

2
(
√

2− 1) = 0.20717.

This value is same as in the Hardy’s case. We conclude that on applying the IC

condition, maximum probability of success of the Cabello’s argument is same as

that of the Hardy’s argument, both achieving the same numerical value 0.20717.

5.6 Conclusions

Maximally entangled state in quantum mechanics does not reproduce Hardy’s cor-

relation whereas generalized non-signaling theory put no such restriction on the
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local randomness of the observable for Hardy’s correlation. We study all the pos-

sibilities of local randomness in Hardy’s correlation in the context of information

causality condition. We observe that in term of local randomness there is gap

between quantum mechanics and information causality condition.

The maximum probability of success of the Hardy’s and Cabello’s non-locality

(for the two qubits system) in Quantum mechanics is 0.09 and 0.1078 respectively

[Kunkri et al., 2006]. Interestingly, for generalized nonlocal no-signaling theories

we find that this bound is 0.5 in both the cases and the probability set for which

this is achieved coincides with the PR correlation. We showed that on applying

the principle of Information causality this bound decreases from 0.5 to 0.20717 in

both the cases, but could not reach their respective Quantum mechanical bounds.

Interestingly, in quantum mechanics the maximum probability of success for the

Cabello’s case is not same as the Hardy’s case [Kunkri et al., 2006]. Since the

condition given by equation (5.4) of the present paper is a sufficient condition

derived in [Pawlowski et al., 2009] for the violating IC, the probability derived

here are therefore, strictly, an upper bound on the maximum probabilities allowed

in an IC-respecting no-signaling theory. Restricting the no-signaling probability

set by the full power of IC principle may reduce the probability to the quantum

limit. However, it is curious that the same sufficient condition for violating the

IC, gives the quantum bound for the CHSH expression [Pawlowski et al., 2009].



Chapter 6

Summary and Future Directions

Motivation underlying the work presented in this thesis was to highlight various

fundamental aspects in the study of quantum correlations. Many of the charac-

teristic features of quantum correlations are revealed here through study of simple

bi-partite systems. The EPR-paper [Einstein, Podolsky and Rosen, 1935] and

the follow up work by John Bell [Bell, 1964] demonstrated that nonlocality is

intrinsic to quantum mechanics. These works renewed deep interest in the foun-

dational studies of quantum mechanics; a comprehensive study on foundational

issues in quantum mechanics can be found in the work [Home, 1997] and [Home

and Whitaker, 2007]. Many crucial experiments where performed demonstrating

the existence of nonlocal correlations conforming to the quantum mechanical pre-

dictions [Aspect, Dalibard and Roger, 1982; Aspect, Grangier and Roger, 1982;

Tittel et al., 1998]. On the other hand, people started harnessing quantum me-

chanics for various information processing tasks like superdense coding [Bennett

and Wiesner, 1992], quantum teleportation [Bennett et al., 1993], quantum cryp-

tography [Bennett, 1992] and quantum computing [Steane, 1998] which lead to

the rise of quantum information science [Nielsen and Chuang, 2002].

Quantum entanglement which is necessary for generating nonlocality is also the key

resource in quantum information processing tasks. However, relationship between

quantum nonlocality and quantum entanglement is complex—the two concepts

are not always proportional; the study along this line was first initiated by Werner

by showing that there can be local-realistic model for certain entangled states

[Werner, 1989]. A. J. Leggett gave a new twist to the study of quantum nonlocality

89
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[Leggett, 2003] by asking a question that whether there can be some nonlocal-

realistic model for entangled states? Contrary to the quantum mechanical feature

that subsystems of a pure entangled states are in mixed state (with no definite

properties), the class of Leggett’s nonlocal-realistic modal tries to introduce sharp

properties to the subsystems at a hidden variable level.

Some other important questions arose in the study of nonlocal quantum correla-

tions in the context of causality principle. The no-signaling condition was shown

to be respected by quantum correlations. An interesting line of study was initi-

ated by Gisin showing the use of no-signaling condition as a tool to either find the

limits of quantum mechanics, like constraining any conceivable non-linear mod-

ification of the Schrdinger equation [Gisin, 1990; Gisin and Rigo, 1995], or to

obtain specific bounds on quantum operations, like deriving bound on the fidelity

of quantum cloning machines [Ghosh et al., 1999; Gisin, 1998]. On the other

hand, Popescu and Rohrlich [Popescu and Rohrlich, 1994] asked an important

question: why nonlocality in quantum mechanics is limited by Cirel’son’s bound?

They showed the existence of supra-quantum no-signaling correlation, like a PR-

correlation. A new line of research emerged which tries to distinguish quantum

correlation from supra-quantum correlations by proposing physical principles like

non-trivial communication complexity [Brassard et al., 2006; van Dam, 2000], In-

formation Causality [Pawlowski et al., 2009], and Macroscopic Locality [Navascues

and Wunderlich, 2010].

We briefly summarize the results presented in this thesis:

Chapter-2 : Simulation of quantum statistics for Werner state by LHV has been

an interesting area for understanding the physics of entanglement [Barrett, 2002;

Gisin, 1991; Gisin and Peres, 1992; Popescu, 1994; Popescu and Rohrlich, 1992;

Werner, 1989]. In chapter-2, we posed the problem from opposite direction i.e.

rather than weakening the (singlet) state we search for the class of (weakened)

dichotomic observable (POVM) for which local model can be provided [Rai, Gazi,

Banik, Das and Kunkri, 2012]. We provide the subset of the most general two

outcome measurements represented by positive operator value measure (POVM)

and presented local models for singlet statistics generated from them. It will be

interesting to study whether the set can be enlarged with respect to different LHV

model.
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Chapter-3 : Next, we discussed about Leggett’s nonlocal-realistic model for en-

tangled states which tries to assign sharp properties to constituent subsystems.

Leggett’s model lead to testable inequalities which are violated by quantum me-

chanics. However, success of Leggett’s model in reproducing the correlations ob-

served in standard Bell-CHSH tests (with co-planer observables) motivated new

experiments for testing this model vis-a-vis quantum mechanics. In chapter-3,

we derive two new forms [Rai, Home and Majumdar, 2011] of Leggett-type in-

equalities which, unlike the previous derived forms [Branciard et al., 2008, 2007;

Groblacher et al., 2007; Leggett, 2003; Paterek et al., 2007], puts no geometrical

constraints on the relevant measurement settings. These forms are believed to be

more convenient for performing future tests of Leggett’s model.

Chapter-4 : In chapter-4, predictive power of the no-signaling condition is demon-

strated [Home, Rai and Majumdar, 2013] in a testable situation involving a non-

ideal measurement setup. To this end, an example is formulated using a non-ideal

Stern-Gerlach (SG) device in one of the two wings of the EPR-Bohm entangled

pairs. In this wing, for two types of measurement in the other wing, we consider

the spin state of a set of particles selected such that they are confined to a partic-

ular half of the plane after they emerge from the SG magnetic field region. Due

to non-idealness of the SternGerlach setup, this spin state will have superposing

components involving a relative phase for which a testable quantitative constraint

is obtained by invoking the no-signaling condition, thereby providing a means for

precision testing of this fundamentally significant principle.

The derivation of our main result here is based on no-signaling condition and the

standard rules of quantum mechanics that include, in particular, taking the overall

dynamics of the non-ideal Stern-Gerlach device to be linear and the probabilities

for measurement outcomes at any given time given by the standard Born rule.

The linearity condition of quantum dynamics and the no-signaling condition are

interlinked [Gisin, 1990; Gisin and Rigo, 1995] and, in particular, the thorough

analysis by Simon et al.[Simon et al., 2001] brings out the point that once the

no-signaling condition and the experimentally well-verified standard Born rule are

taken to be valid, quantum dynamics is rather rigidly constrained to be linear.

Thus, our result turns out to be empirically invalid, it would seem plausible to

infer that the violation of no-signaling condition arises from a departure from

linearity in the way a non-ideal Stern-Gerlach setup acts in conjunction with the

type of post-selection process that is used in our example. The tenability of such
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a possibility would then call for further investigation; for example, the general

framework for accommodating non-linearity in quantum dynamics discussed by

Weinberg [Weinberg, 1989] may be invoked in the context of our setup. It is

hoped that the predictive power of the no-signaling condition in a testable situation

as illustrated by the example treated here using a non-ideal measurement setup

may motivate the formulation of other such examples that could be helpful for a

deeper understanding of the role of NSC in the context of non-ideal measurement

situations.

Chapter-5 : In this chapter, in a generalized no-signaling framework, we study

applications of information causality principle [Pawlowski et al., 2009] to two two-

level systems showing Hardy-type nonlocality. First, by noting that maximally

entangled state in quantum mechanics does not reproduce Hardy’s correlation

whereas generalized non-signaling theory put no such restriction on the local ran-

domness of the observable for Hardy’s correlation, we study [Gazi, Rai, Kunkri

and Rahaman, 2010] all the possibilities of local randomness in Hardy’s correlation

in the context of information causality condition. We observe that in term of local

randomness there is gap between quantum mechanics and information causality

condition.

Next, we derive an upper bound on maximum success probability of Hardy-type

arguments under the information causality principle [Ahanj, Kunkri, Rai, Ra-

haman and Joag, 2010]. The maximum probability of success of the Hardy’s

and Cabello’s non-locality (for the two qubits system) in Quantum mechanics is

0.09 and 0.1078 respectively [Kunkri et al., 2006]. Interestingly, for generalized

nonlocal no-signaling theories this bound is 0.5 in both the cases and the proba-

bility set for which this is achieved coincides with the PR correlation. We showed

that on applying the principle of information causality this bound decreases from

0.5 to 0.20717 in both the cases, but could not reach their respective Quantum

mechanical bounds. Interestingly, in quantum mechanics the maximum proba-

bility of success for the Cabello’s case is not same as the Hardy’s case [Kunkri

et al., 2006]. Since the condition applied here is only a sufficient condition derived

in [Pawlowski et al., 2009] for the violating IC, the probability derived here are

therefore, strictly, an upper bound on the maximum probabilities allowed in an

IC-respecting no-signaling theory. Restricting the no-signaling probability set by

the full power of IC principle may reduce the probability to the quantum limit.
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6.1 Future directions

Below some open problems are listed which are going to be considered in the near

future (some of them are more general, others are particularly linked with this

thesis):

• The nonlocal feature of quantum mechanics has given rise to an area where

this non-classical feature can be studied independently of any particular

physical theory. It has been shown that there are nonlocal correlations

[Popescu and Rohrlich, 1994] which is post quantum but still respects no

signaling condition. So the natural question arises what are the other condi-

tions that restrict the physical world to obey quantum mechanics? There are

various suggestions and one of the surprising discoveries in this direction is

the Information Causality principle [Pawlowski et al., 2009]. This condition

exactly reproduces the optimal Bell-CHSH inequality violation by quantum

mechanics. In this sense it rejects all post quantum correlation whose Bell

violation goes beyond Cirel’son bound. But still it does not detect all post

quantum correlation as for example it does not reproduce the optimal suc-

cess probability for Hardy’s nonlocality [Ahanj, Kunkri, Rai, Rahaman and

Joag, 2010] argument in quantum mechanics. So it is an active area of re-

search to suggest further conditions which could reproduce some quantum

features if not the whole quantum mechanics.

• Recently, there are some results which show that optimal quantum Bell vi-

olation can also be reproduced by uncertainty principle [Oppenheim and

Wehner, 2010] and complementarity principle [Banik, Gazi, Ghosh and Kar,

2012]. This is surprising because uncertainty relation and complementarity

principle can restrict the correlation that can be achieved in physical world.

So these results provide a new direction where various quantum features

like uncertainty, complementarity, nonlocality, steering are intrinsically re-

lated with each other and all these features can be also explored in general

non-signaling probabilistic theories—see for example some recent works [Dey

et al., 2013; Mal et al., 2013; Pramanik et al., 2013].

• In this thesis we have discussed only bi-partite correlations. The multipartite

correlations in quantum mechanics are more complex and these correlations
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have no unique measure. So reproduction of multi-partite quantum corre-

lations by some general physical principles is itself a difficult problem and

still there is no such solution. Recently it has been shown [Das et al., 2012,

2013; Gallego et al., 2011] that there are post quantum tri-partite correla-

tions which satisfy all discovered or yet to be discovered bi-partite principles.

This result immediately suggests that there must be some multipartite prin-

ciples along with bi-partite candidates to detect post quantum correlations.

There has been little development in this direction. Only there is an inequal-

ity which arises in the context of a game known as ‘Guess your neighbor’s

input’ (GYNI game) [Almeida et al., 2010]. There are post quantum multi-

partite correlations that violate the GYNI inequality but there are also post

quantum multipartite correlations that satisfy this (GYNI) inequality. It

will be interesting to search for more physically motivated information the-

oretic multipartite principle which would draw line between quantum and

post quantum multi-partite correlations.
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